开关电源仿真

上传人:ni****g 文档编号:554871965 上传时间:2022-07-28 格式:DOC 页数:53 大小:2.23MB
返回 下载 相关 举报
开关电源仿真_第1页
第1页 / 共53页
开关电源仿真_第2页
第2页 / 共53页
开关电源仿真_第3页
第3页 / 共53页
开关电源仿真_第4页
第4页 / 共53页
开关电源仿真_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《开关电源仿真》由会员分享,可在线阅读,更多相关《开关电源仿真(53页珍藏版)》请在金锄头文库上搜索。

1、开关电源中变压器的Saber仿真辅助设计一:反激一、 Saber在变压器辅助设计中的优势:1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感

2、元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。附件下载磁芯手册.XLS二、 Saber 中的变压器我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些)分别是:xfrl线性变压器模型,26绕组xfrnl 非线性变压器模型,26绕组单绕组的就是电感模型:也分线性和非线

3、性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。需要注意的是,k 为 0。99 时,漏感并不等于 lp 或者 ls 的 1/100。漏感究竟是多少,后述。其他设置项我没有用过,不懂的可以保持默认值。非线性变压器参数设置(以2绕组为例):其中:np、ns 初级、次级匝数r

4、p、rs 初级、次级绕组直流电阻值area 磁芯截面积,即 Ae,单位平方米,84.8u 即 84.8 微平方米,也就是 84.8 平方毫米。len_fe 磁路长度,单位米,这里的 69.7m 是EE3528磁芯的数据len_air 气隙长度,单位米,这里的 1.8m 是最后获得的设计参数之一。matl 磁芯材质,下一讲了其他参数我也不会用,特别是没有找到表达漏感的设置。有了Saber 中这两类变压器模型,基本上足以应付针对变压器的仿真了。他们的特点是,xfrl模型速度快,不会饱和,而且有漏感表达,xfrnl模型真实,最后得出设计数据主要靠它了。应用这两个模型有几个小技巧需要掌握:1、已知 l

5、p、ls求匝比,或者已知 lp、匝比求 ls2、已知线径、股数、匝数、温度,计算绕组电阻值3、已知磁芯型号,查磁芯手册获得 area、len_fe参数三、 Saber中的磁性材料总共在Saber(2007)中找到9种材质的磁心,参数如下:Saber的磁心采用的是飞利浦的材质系列,但是不知道什么原因除了表中黄色部分的4种材质外,查不到其他材质的文档。因此采用了类比法用仿真求出了其他材质的主要参数。类比法用的仿真电路实际上是个电桥,如图:电路左右对称分流,左边是一线性(理想)电感做参照,右边是需要检测的非线性电感或者变压器。当信号源很小时,比如1mV,特定已知的材质(比如“3D3”)磁芯电感通过较

6、大阻值的电阻分压后可得到一基准端电压,不同材质可得到一系列相对端电压,并与其初始导磁率成比例关系,从而获得表中系列材质的测试初始导磁率数据。当信号源较大时,加大电流到适当的程度,被测试电感会出现临界饱和迹象(如图中右窗口波形刚开始变形),类比可得到各系列材质的测试B值。这个类比电桥也是以后要用到的线性变压器和非线性变压器的参数转换电路,附后,需要的可以下载。遗憾的是,可选择的材质实在太少,尽管Saber有专门针对磁性材料的建模工具,但是工程上常用的TDK系列,美芯、美磁等标准磁心都没有开发对应的Saber磁芯材质模型,这个重要的工作有待有心人或者厂家跟进(我觉得起码厂家应该花钱完善自己的磁材模

7、型)。所幸的是,我们做开关电源中的变压器使用得最多的锰锌铁氧体功率磁芯PC40材质,可以用“3C8”材质完全代替,很多实例反复证明,用“3C8”代替PC40材质仿真变压器或者PFC电感是非常准确的,仿真获得的各种参数误差已经小于PC40材料本身参数的离散性(几个百分点)。附1:几个已知的飞利浦的材质文档附2:类比电桥压缩文件四、 辅助设计的一般方法和步骤1、开环联合仿真首先需要搭建在变压器所在拓扑的电路,在最不利设计工况下进行开环仿真。为保证仿真成功,一般先省略次要电路结构,比如控制、保护环路以及输入输出滤波环节,尽量保持简洁的主电路结构。器件可以使用参数模型(_sl后缀)甚至理想模型。变压器

8、、电感一般先采用线性模型。此阶段仿真主要调整并获得变压器初、次级最合适电感量,或者电感量允许范围。需要反复调整,逐渐加上滤波和物理器件模型,最后获得如下参数:变压器初级最佳电感量 lp变压器次级电感量及大致的匝比变压器初级绕组上的电流波形,主要是峰值电流 Im电路中其他电感的 lp、Im 值。2、变压器仿真将上述仿真获得的(参照)变压器复制到4楼所述的类比仿真电桥中的一测,另一侧用一个对应的非线性(目标)变压器。注意:所有变压器各绕组都要接地,一次仿真只能针对一个对应的绕组,且绕组电阻 rx 不能为0。对称调整电路电流,使参照变压器初级上的峰值电流 = Im,这里波形和频率不重要,可以直接用工

9、频正弦。对目标变压器设置和调整不同的参数,包括:磁芯型号参数、匝数、气隙开度,一般用“3C8”材质。调整目标是使电桥平衡,即类比电桥两边获得同样幅度的不失真波形。调整中有个优化参数的问题,由于 Im 是确定的,在这个偏置电流下,首先是要找到一款最小的磁芯,适当的匝数和气隙开度,能够使其达到参照电感量。换句话说,如果选用再小一号的磁芯则不能达到此目的(要饱和)。其中,匝数和气隙开度有微妙之关系,一般方法应该首先求得(调试得)该磁芯在Im 条件下可能获得的最大电感量的气隙开度,保持该气隙开度不变,再减少匝数直到需要的参照的电感量。这样的好处是:可以获得最大的抗饱和安全余量、最少的匝数(最小的绕组电

10、阻和窗口占用)。其中:抗饱和安全系数=临界饱和电流/ Im。3、再度联合仿真把类比得到的非线性(目标)变压器代替第一步骤联合仿真电路中的线性变压器,再行仿真。其中,由于匝数已经求得,可通过简单计算可求得绕组电阻,应修改模型中这个参数。现在的仿真更接近真实的仿真,可以进一步观察变压器在电路中的表现,或许进一步调整优化之。采用同样的手段,其他电感也应该逐个非线性化,饱和电感、等效漏感等也应纳入联合仿真。其中:变压器损耗 = 变压器输入功率 - 变压器输出功率电感损耗功率 = (电感端电压波形 x 电感电流波形)平均值电感、变压器绕组铜损 = (电感、变压器绕组端电压波形)有效值 / 绕组欧姆电阻

11、rx)平均值磁损 = 总损耗 - 铜损,或者,磁损 = 绕组电阻为0的变压器损耗。我先抛砖引玉一下,正激有如下4种复位方式: 采用辅助绕组复位电路采用RCD箝位复位电路采用有源箝位复位电路 LCD复位即无损吸收电路其中方案1要求辅助绕组与初级绕组必须紧耦合,实际上因漏感的存在电路中仍需外加有损吸收网络,以释放其储能;方案2是一种有损复位箝位方式,因其损耗的大小正比于电路的开关频率,(和方案1中外加有损吸收网络一样)这不仅降低了电源本身的效率,也限制了电源设计频率的提高;方案3中需要附加一复位开关管与相关控制电路,增加了电路复杂性的同时,也带来了附加电路损耗与总成本的上升。本文介绍一种新型无损箝

12、位电路,无须额外附加辅助开关管,电路简单,可有效降低功率管的电压应力,箝位效果优异,且有利于电源工作效率的提高。如图所示先把原理介绍一下:在一个开关周期中,电路工作状况如下。 1、模式0t0,t1在t0 时刻之前,开关管 S上的电压为输入电压 Vin,箝位电容电压为 VCc。在 t0 时刻S开通,其结电容上的能量全部消耗在内部。 S 开通后,变压器原边电压为输入电压 Vin,其励磁电流 im 从Im()开始线性上升。变压器原边流过的电流为折算到原边的负载电流和励磁电流之和。同时,箝位二极管 D12开通,箝位电感 Lc 上的电流 iLc 线性增大。此模式期间,负载电流 Io流经整流管 D21。

13、2、模式 2t1,t2t1时刻,S 关断,折算到原边的负载电流 Io/n、励磁电流 im 和箝位电感电流 iLc 之和给开关管结电容 Cs充电,vcs 电压上升。变压器原边电压依然为正,因此励磁电流依然增大,整流管 D21继续导通。t2 时刻,Cs的电压上升到 Vin,模式 2 结束。由于结电容 Cs 的作用,S为零电压关断。 3、模式3t2,t3从t2 时刻开始,变压器原边电压开始反向,因此励磁电流减小,整流管 D21 关断,负载电流通过 D22续流。开关管结电容 Cs的充电电流为励磁电流和箝位电感电流之和,不再包括负载电流。t3 时刻,vcs上升到 VinVCc,模式3结束。 4、模式 4

14、t3,t4t3时刻,Cs 的电压上升到 VinVCc,二极管 D11 开始导通。变压器原边励磁电感和电容(CsCc)谐振,励磁电流减小。箝位电容两端电压被箝位在输入电压Vin,电流 iLc 线性减小。t4 时刻,箝位电感电流较小为零,二极管 D12自然关断,模式 4结束。 5、模式5t4,t5此工作模式中,变压器原边励磁电感和电容(CsCc)继续谐振,直到 t5时刻励磁电流减小为零,二极管 D11 自然关断,模式 5 结束。 6、模式6t5,t6t5时刻,励磁电流为零,但因变压器原边励磁电感承受负压VCc,励磁电感 Lm 和开关管 S 的结电容 Cs 开始谐振,结电容 Cs 开始放电,励磁电流

15、开始反向增大,直至 t6时刻 Cs 两端电压减小为 Vin,励磁电流达到负向最大值,模式 6 结束。 7、模式7t6,t7t6时刻,整流二极管 D21导通,励磁电流折算到副边使 D21,D22 同时提供负载电流, 流过D21 的电流为nIm(), 流过 D22 的电流为 IonIm()。在 t7 时刻,开通开关管 S,开始下一个开关周期。五、设计举例一:反激变压器1、开环联合仿真以100W24V全电压反激变换器为例,最简洁的开环仿真电路如图(仿真压缩文件FB1附后):注:这里采用无损吸收方式,以便更仔细的观察吸收的细节和效果。主要设计参数为:输入电压85265VAC,对应最低100VDC,最高375VDC输出电压24V输出功率100W,考虑过载20%,即120W,对应负载阻抗4.8欧姆PWM频率50KHz先采用一个2绕组线性变压器仿真。先初步拟订的变压器参数如下:其中暂定的偶合系数 k=0.985,可表达约3

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号