绿色UPS设计论文

上传人:人*** 文档编号:553532756 上传时间:2023-06-02 格式:DOC 页数:10 大小:51.02KB
返回 下载 相关 举报
绿色UPS设计论文_第1页
第1页 / 共10页
绿色UPS设计论文_第2页
第2页 / 共10页
绿色UPS设计论文_第3页
第3页 / 共10页
绿色UPS设计论文_第4页
第4页 / 共10页
绿色UPS设计论文_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《绿色UPS设计论文》由会员分享,可在线阅读,更多相关《绿色UPS设计论文(10页珍藏版)》请在金锄头文库上搜索。

1、绿色UPS摘要:本文简单介绍了UPS的基本结构,着重分析了UPS在使用中给电网及环境造成的污染及其原因,最后给出了几种当前较为先进的消除此类污染的环保技术措施。 关键词:UPS 污染 环保 电流谐波 功率因数 超导储能 飞轮储能 1.引言UPS(Uninterruptible Power Supply)意为不间断电源系统,它能够为负载提供连续稳定的电能。随着计算机、精密电子仪器等用电设备的普及以及电信、医院、银行、体育场馆、机场等重要场所对供电质量要求越来越高, UPS得到了广泛的应用,已经逐步发展成为高可靠、高性能、高度自动化的局部供电中心。但是随着UPS的大量使用,UPS对电网及环境造成的

2、污染也渐渐显现出来。在环保意识日益强烈的今天,人们不断研究开发新的环保技术替代原有技术,使UPS逐步成为真正的绿色电源。 2. UPS的基本原理一般来讲,UPS由五大部分组成:整流电路、储能机构、逆变电路、旁路开关电路及测控电路。如图2.1所示: 图2.1 UPS结构框图 整流电路:将交流电变换为直流电,完成对储能机构充电,同时通过逆变器向负载供电储能机构:储能机构是UPS的核心部分,当市电正常时,储能机构从电网吸收能量储存起来;当市电中断时,储能机构将电能释放出来,供逆变器使用。逆变电路:将整流电路所得的直流电压或者储能机构的电压变换成交流电压。旁路开关:是市电旁路供电和逆变器供电的电气转换

3、器件。测控电路:是 UPS的大脑,监测输入电压、电流的水平和控制输出的电压和电流精度;设置和控制整流器、逆变器;控制储能机构的充放电;控制主回路与旁路之间的转换。3. UPS带来的污染3.1. 对电网的污染一般UPS 的整流电路常采用晶闸管相控整流电路,常用的整流电路有三相全桥六脉冲整流电路、六相全桥十二脉冲整流电路等。相控整流电路结构简单控制技术成熟,但由于交流输入功率因数低,并向电网注入大量的谐波电流,会对电网产生较大的污染。3.1.1谐波含量高相控整流电路利用整流元件的导通、截止作用短接和断流,以达到改变输出电压的目的,这样就会产生谐波电流,当整流电路滤波电抗足够大,不计换相重叠角且控制

4、角为零时,谐波次数和谐波电流(理论最大值)为式中 k-整数1,2,3,。p-整流电路的相数或每周脉冲数In-n次谐波电流I1-基波电流常用整流器负荷电流的谐波次数、谐波电流、含量(理论最大值)、谐波畸变率见下表: 此外在UPS中,一般由交流市电输入整流,整流后大都采用大容量的电容器进行滤波以使输出电压平滑(在 UPS中还并联有蓄电池),只有电压高于滤波电容两端电压时,滤波电容才开始充电,这就在电容充电期间形成了宽度很窄的脉冲电流,这种电流不仅严重滞后于电源电压,而且谐波分量很大。 3.1.2输入功率因数低中大型UPS一般都是双逆变在线式结构,输入整流器采用三相全桥六脉冲可控整流电路,其输入功率

5、因数是由换相重叠角和控制角来就决定的。换相重叠角是指三相整流电路中两相电压共同导通的时间;控制角表示触发延时时间,即从正弦波过零开始到晶闸管触发导通之间这段晶闸管不导通的时间。相控整流电器的功率因数为如果换相重叠角很小,可以忽略不计时,则相控整流器的功率因数表达式为说明整流器的功率因数主要与控制角的余弦有关,控制角愈小,功率因数愈大;反之则功率因数愈小。实际上,在整流电路中,除了存在整流电压与整流电流之间相位差之外。还存在着由于高次谐波电流引起的电流波形畸变问题,可以用电流畸变系数进行计算。电流畸变系数如上式所示。考虑到高次谐波畸变因数后,整流器的功率因数PF可以表示为高频开关整流电源由于是峰

6、值整流形式,其输入电流为很窄的大电流脉冲波,谐波分量很大,电流畸变系数很低,故其功率因数PF也很低。3.1.3高谐波含量、低功率因数的危害大量谐波电流涌入电网后,会使线路的附加损耗增加,引起线路过热加速绝缘介质的老化,导致绝缘破损。另外谐波电流通过电网时会产生有功损耗,对电网的经济运行很不利。另外,电网中设置的并联电容器的容抗会随着谐波次数的增加而减小,因而会使电容器过电流发热导致绝缘击穿的故障增多。电力系统存在分布电容和功率因数补偿电容器,谐波电流有可能激发局部串联谐振或并联谐振,直接破坏整个系统的安全运行。当选用柴油发电机组与UPS匹配使用时,UPS向柴油发电机组反射的大量高次谐波,特别是

7、5次和11次谐波会对柴油发电机组产生严重的危害,使柴油发电机组的效率大大降低。大量的谐波会使用电设备运转不正常或者不能正常操作;谐波同时会干扰通信系统、降低信号的传输质量、破坏信号的正常传递,甚至损坏通信设备。功率因数低会使电网的电压下降,电气设备得不到充分得利用,大量的无功电流在线路上流动占用了线路资源降低了线路传输有功电流的能力,增加附加损耗,降低发电、输电及用户设备的效率。3.2.UPS对环境的污染目前UPS中广泛采用蓄电池作为储存电能的装置。蓄电池需先用直流电源对其充电,将电能转化为化学能储存起来。当市电中断时,UPS将依靠储存在蓄电池中的能量维持逆变器的正常工作,此时蓄电池通过放电将

8、化学能转化为电能提供给UPS使用。UPS中应用的蓄电池共有三种:开放型液体铅酸电池、密封式免维护铅酸蓄电池、镉镍蓄电池。开放型液体铅酸电池的正电极活性物质过氧化铅,负电极活性物质是海绵状铅,电解液是浓硫酸。蓄电池在充电过程中,电池内部产生的硫酸蒸汽、水蒸气、氢气和氧气等混合物质会逸出扩散到空气中。铅酸蓄电池制造过程中会产生大量的固体废弃物、含硫酸和重金属废水以及含铅尘、铅烟的大量废气。铅酸蓄电池中的铅和铅氧化物在蓄电池的生产和使用过程中以粉尘和烟雾的形式通过呼吸道和消吸道进入人体,铅是人体唯一不需要的微量元素,它性质稳定、不可降解,对人体神经系统、消化系统、造血系统以及肾脏有一定的影响。尽管密

9、封式免维护铅酸蓄电池生产厂家采用各种办法减少硫酸蒸汽、水蒸气、氢气和氧气等混合物质逸出,使它们尽量消化在电池内部,但绝对控制是不可能的;同样由于密封式免维护铅酸蓄电池的工作原理仍然延续传统的铅酸电池,采用同样的反应物质,它对环境带来的污染也是不可避免的。镉镍电池的正极性物质是高价氢氧化镍,负极性物质是海绵状金属镉,氢氧化钾或氢氧化钠的水溶液作为电解液。镉是重要的工业和环境污染物,主要来源于锌、铜、铅矿的冶炼,电镀、蓄电池、合金、油漆和塑料等工业生产中。镉污染的主要途径是食物和吸入。镉是人体非必需且有毒元素,还是IA级致癌物,具有致癌、致畸和致突变作用,镉在体内的生物半衰期长达1030年,为已知

10、的最易在体内蓄积的有毒物质。镉的不断累积,可使接触者产生各种病变,还可引起肺、前列腺和睾丸的肿瘤。 4. 环保措施4.1.减少对电网的污染现代意义的UPS越来越注重对电网的环境保护意识,在降低谐波污染、无功损耗等方面根据UPS功率大小的不同,电路结构的不同可以采取不同的措施和方法。传统的大功率UPS整流器大都采用晶闸管相控整流电路,在输入侧加装无源滤波器,来吸收谐波和提高功率因数,但是由于受到滤波器的体积和成本的限制,最高可使功率因数提高到0.9 ,电流谐波THD 5,而且无源滤波器抑制谐波本质上是频域处理方法,即将非正弦周期电流分解成傅里叶级数,对某些谐波进行吸收,因此只能抑制固定的几次谐波

11、,补偿固定的无功功率。针对无源滤波器的上述缺点人们提出了在UPS网侧设置有源滤波器对谐波和无功进行补偿。有源滤波器以时域分析为基础,对畸变波形实时跟踪补偿,使得电源侧的电流波形与电压波形一致。有源滤波器具有高度可控性和快速响应特性,并且能补偿各次谐波,自动产生所需变化的无功功率,其特性不受系统影响,不增加电容元件可以避免系统发生谐波谐振,相对体积和重量较小。UPS电路中采用高频整流技术,通过高频PWM(PULS WIDTH MODULATION)控制,可以使输入电流和输入电压相位相同,网侧功率因数为1,输入谐波电流也将降到3%以下。其网侧高频滤波器的体积非常小,只要载波的频率足够高,就可以利用

12、线路的杂散电感和很小的电容进行滤波,实现输入电流正弦化。此外可以在 UPS的结构上进行改进,避免传统的双变换在线的串联级联的模式,采用先进的模式克服功率较大的相控整流器对电网的干扰和影响,也可以对电网起到一定的调节作用。例如,采用高频双向变换串并联补偿电路结构,如图4.1所示,图4.1高频双向变换串并联补偿电路结构框图该系统由两个逆变器组成,两个逆变器都是可双向变换的高频逆变器。逆变器(I)实际上是一个并联在主回路的电流源,把负载电流中的无功和谐波滤掉,同时对电网电压的变化进行补偿,输入电压高于输出电压时,吸收功率形成反极性电压补偿,输入电压低于输出电压时,输出功率形成正极性补偿。逆变器(II

13、)是一个电压源,并接于负载两端,稳定输出电压,保证向负载提供纯净的正弦波电压,此功能是与逆变器(I)共同完成的,当逆变器(I)输出功率进行正极性补偿时,逆变器(II)从电网吸收电流并逆向变换给逆变器(I),当逆变器(I)吸收功率做反极性补偿时,逆变器(II)将逆变器(I)吸收的功率以电流形式正向变换转送给负载。逆变器(II)同时控制中间储能装置的电压,完成对储能装置得充电,保持此点电压的稳定。另外,逆变器(II)还对负载端的无功电流和谐波电流进行补偿,保证负载端的电流谐波成份不传送到输入端。高频双向变换串并连补偿电路既可以实现输入电流正弦化,又可以使输入功率因数为1或者任意值,系统的运行效率也

14、很高。此种UPS接入电网不仅不会造成电网的无功功率的增加,而且还可以使量地对电网进行无功调节。总之,对于小功率的UPS 可以采用PFC 整流器和高频PWM整流器及其相应的控制技术,对于大中功率的UPS 采用高频双向变换串并连补偿电路结构比较适合,具有广阔的发展和应用前景。 4.2.消除对环境的污染近年来人们越来越关注环境,如何在发展的同时保护环境,成为社会生活中的大问题, UPS中大量采用铅酸及镉镍蓄电池作为储能装置,已经成为对环境造成破坏的污染源,消除 UPS对环境的污染的根本措施就是采用环保的无污染的储能装置替代原有的化学电池,目前新兴的高科技储能技术主要有两种:超导储能和飞轮储能。4.2

15、.1.超导储能(SMES)超导材料具有高载流能力和零电阻的特点,可长时间无损耗地储存大量电能,需要时储存的能量可以连续释放出来。在此基础上可制成超导储能系统。超导储能装置一般由超导线圈、低温容器、制冷装置、整流逆变装置和测控系统几部分组成。如图5.2.1所示图5.2.1超导储能装置结构框图其中超导线圈是超导储能装置的核心部件,它可以是一个螺旋管线圈或是环形线圈。螺旋管线圈结构简单,但周围杂散磁场较大;而环形线圈周围杂散磁场小,但是结构较为复杂,超导线圈以电感的方式直接将电能储存起来。如果线圈由普通的铜线绕成,磁能将会由于线圈电阻的存在以热的形式散失掉,然而如果导线具有超导特性(没有电阻)能量就会恒久地存在直到需要为止。线圈中存储电流的能力是由温度和磁场强度决定的,对于大多数超导储能装置来说,最佳的运行温度是50-77K。超导储能装置储存的能量E由下式决定式中L是线圈的感应系数,I是流过线圈的电流。一个完整的超导储能系统的运行原理非常简单,首先通过整流装置将电网提供的交流电转化为直流电加入到超导线圈中,因此当能量从系统流入线圈中时,直流电压将会对超导线圈充电,能量被储存在线圈中。能量储存的多少是由装置的设计决定的。当交流网络需要提供能量时,线圈作为电源,释放储存的能量,通过逆变器将直流电转换为交流电。超导储能装置

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号