高分子材料纳米技术

上传人:M****1 文档编号:552957496 上传时间:2022-11-20 格式:DOC 页数:9 大小:47KB
返回 下载 相关 举报
高分子材料纳米技术_第1页
第1页 / 共9页
高分子材料纳米技术_第2页
第2页 / 共9页
高分子材料纳米技术_第3页
第3页 / 共9页
高分子材料纳米技术_第4页
第4页 / 共9页
高分子材料纳米技术_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《高分子材料纳米技术》由会员分享,可在线阅读,更多相关《高分子材料纳米技术(9页珍藏版)》请在金锄头文库上搜索。

1、青岛职业技术学院生物化工学院高分子材料纳米技术姓 名: 专业班级: 学 号:日 期:纳米材料的研究现状、应用与未来发展摘要纳米材料与软物质的研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在诞生之初就显现出蓬勃的生命力,而且对它们的研究经久不衰。在知识与学科互相交叉的今天,纳米材料与软物质有可能相互结合,在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。关键词 特性 效应 应用 发展 展望纳米发展小史1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现

2、根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。什么是纳米材料纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃

3、来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。正文一、纳米材料的特性所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1-100nm);(2)有大量的界面或自由表面;(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,也使纳米材料受到各国科学家的追捧。物质尺度到了纳米量级后,由于表面电子能级(费米面)的变化(Kubo效应)导致了纳米材料具有许多奇特的性能,从而使其具备

4、奇异性和反常性,能使多种多样的材料改性,用途极为广泛。表面效应、量子尺寸效应、体积效应、宏观量子隧道效应、界面相关效应,这五种效应是纳米材料的基本特性,它们使纳米粒子和纳米固体呈现出许多奇异的物理性质、化学性质和力学性质,它们是纳米技术应用的理论基础。1.表面效应粒子直径减少到纳米量级,表面原子数和比表面积、表面能都会迅速增加;处于表面的原子数增多,使大部分原子的周围(晶场)环境和结合能与块材内部原子有很大的不同;表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合,故具有很大的化学活性。2.量子尺寸效应纳米粒子尺寸下降到某一定值时,费米能级附近的电子能级将由连续能级变

5、为分立能级。这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。3.体积效应当纳米粒子的尺寸变小时,周期边界条件将被破坏,使得物理化学性质发生变化,甚至是发生突变。如果颗粒尺寸与传导电子的德布罗意波长相当或更小时,金属微粒均失去原有的光泽而呈黑色(光的吸收特性变化);磁性超微颗粒在尺寸小到一定范围时,会失去铁磁性,而表现出顺磁性或超顺磁;非铁磁性也可转化为铁磁性;铁电态变为顺电态、超导相向正常相转变等。4.宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。近来年,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的

6、势垒而产生变化。库仑堵塞效应只能单电子传输,电荷宇称效应电荷数奇偶性。5.界面相关效应由于纳米结构材料中有大量的界面,与块材相比,纳米结构材料具有反常高的扩散率,它对蠕变、超塑性等力学性能有显著影响;可以在较低的温度对材料进行有效的掺杂,并可使不混溶金属形成新的合金相;出现超强度、超硬度、超塑性等。二、纳米材料的研究现状及其应用目前,纳米陶瓷、纳米碳材料、纳米高分子材料、纳米复合材料、微乳液、纳米纤维、纳米磁性材料、纳米储锂材料、纳米吸波材料等新型材料已经崭露头角,有的已经应用在实际产品中。2009年IDF上,英特尔带来了全球第一块22纳米工艺的芯片。美国科学家开发出一种简单、可行的碳纳米管混

7、合物的净化方式,可以借助紫外线和空气中的氧生成净化的半导体纳米管,对发展下一代计算机芯片具有非凡价值。7月13日一个中德小组在期刊自然纳米技术网络版上报告说,他们通过研究首次证明把钴元素掺入由氧化锌制成的纳米导线,能使纳米导线具有内禀磁性,这一成果对研制运算速度快且能耗低的新型磁性半导体材料具有重要意义。9月27日的Nature Nanotechnology报道,辛辛那提大学的生物工程研究人员使用一种RNA动力纳米马达,成功地开发出了一种能够使单链和双链的DNA通过的人造微孔。1.纳米陶瓷纳米陶瓷是解决陶瓷脆性的战略途径之一,纳米陶瓷具有类似于金属的超塑性是纳米材料研究中令人注目的焦点。2.碳

8、纳米管1991年1月,日本筑波NEC实验室的饭岛澄男首次用高分辨分析电镜观察到碳纳米管。纳米碳管的质量是相同体积钢的六分之一,却具有超过钢100倍的强度。不仅具有良好的导电性能,还是目前最好的导热材料。纳米碳管优异的导热性能将使它成为今后计算机芯片的热沉,也可用于发动机、火箭等的各种高温部件的防护材料。研究表明,碳纳米管当中的空腔不仅可以充当微型试管、模具或模板,而且将第二种物质封存在这个约束空间还会诱导其具备在宏观材料中看不到的结构和行为。3.纳米纤维在化纤纺丝过程中加入少量的纳米材料,可生产出具有特殊功能的新型纺织材料,如:抗紫外线纤维、抗菌除臭纤维、抗静电防电磁波纤维、隐身纺织材料、强耐

9、磨纺织材料、远红外线反射功能化纤、抗红外型化纤、导电型化纤和其它功能纤维。三、纳米材料研究展望正因为纳米材料具有与传统块材不同的结构、不同的特性与效应,使得纳米材料自上世纪80年代以来,持续引发了各国科学家的巨大热情。虽然目前发展纳米科技存在科学理论、科学方法、科技创新和高风险等难点,但是纳米材料新奇的特性可能引发新一轮的技术革命,可能是21世纪人类文明继续发展的物质基础。(1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon 钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的Si

10、O2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。(2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级。(3)颗粒膜巨磁电阻尚有潜力。1992年,纳米颗粒膜巨磁电阻发现以来,一直引起人们的关注,目前这一领域研究追求的目标是提高工作温度,降低磁场。如果在室温和零点几特斯拉磁场下,颗粒膜巨磁阻能达到10,那么就将接近实用的使用目标。目前国际上科学家们正在这一领域努力。(4)纳米组

11、装体系设计和制造有新进展。美国加利福尼亚大学化学工程系成功地把纳米Au 颗粒组装到DM的分子上形成纳米晶分子组装体系;美国利用自组装技术将几百支单壁纳米碳管组成晶体索Ropes,这种索具有金属特性,室温下电阻率小于104Wcm;将纳米三碘化铅组装到尼龙上,在X射线照射下具有强的光电导性能,利用这种性能为发展数字射线照相奠定了基础。四、结语纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。 /

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号