福建师范大学21秋《常微分方程》离线作业2-001答案_24

上传人:桔**** 文档编号:552802321 上传时间:2023-05-21 格式:DOCX 页数:13 大小:16.81KB
返回 下载 相关 举报
福建师范大学21秋《常微分方程》离线作业2-001答案_24_第1页
第1页 / 共13页
福建师范大学21秋《常微分方程》离线作业2-001答案_24_第2页
第2页 / 共13页
福建师范大学21秋《常微分方程》离线作业2-001答案_24_第3页
第3页 / 共13页
福建师范大学21秋《常微分方程》离线作业2-001答案_24_第4页
第4页 / 共13页
福建师范大学21秋《常微分方程》离线作业2-001答案_24_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《福建师范大学21秋《常微分方程》离线作业2-001答案_24》由会员分享,可在线阅读,更多相关《福建师范大学21秋《常微分方程》离线作业2-001答案_24(13页珍藏版)》请在金锄头文库上搜索。

1、福建师范大学21秋常微分方程离线作业2-001答案1. 就p,q的各种情况说明二次曲面zx2py2qz2的类型就p,q的各种情况说明二次曲面zx2py2qz2的类型正确答案:(1)pq0时zx2是抛物柱面;rn(2)q0p0时若p0zx2py2是椭圆抛物面若p0zx2py2是双曲抛物面;rn(1)pq0时,zx2,是抛物柱面;(2)q0,p0时,若p0,zx2py2是椭圆抛物面,若p0,zx2py2是双曲抛物面;2. 求经过三点A(1,1,2),B(3,-2,0),C(0,5,-5)的平面方程求经过三点A(1,1,2),B(3,-2,0),C(0,5,-5)的平面方程设平面方程为ax+by+c

2、z+d=0 由于点A,B,C在平面上,故点的坐标满足平面方程组,即 设(x,y,z)是平面上任意一点,得以a,b,c,d为未知量的齐次方程组 因为a,b,c,d不全为零,说明方程组有非零解,即D=0,故系数行列式 由此可知平面方程为29x+16y+5z-55=0 3. 举例证明,当AB=AC时,未必B=C举例证明,当AB=AC时,未必B=C证 例如,设 则有 4. 微分方程y2yy0的一个特解是( )Ayx2exByexCyx3exDyex微分方程y2yy0的一个特解是( )Ayx2exByexCyx3exDyex正确答案:B5. 数列有界是数列收敛的( )A.充分条件B.必要条件C.充分必要

3、条件D.既非充分又非必要条件参考答案:B6. 罗尔中值定理是拉格朗日中值定理的特殊情况。( )A.错误B.正确参考答案:B7. 设S2是来自正态总体XN(,2)的随机样本(X1,X2,Xn)的方差,2是未知参数,试问a,b(0ab)满足什么条件,才设S2是来自正态总体XN(,2)的随机样本(X1,X2,Xn)的方差,2是未知参数,试问a,b(0ab)满足什么条件,才能使2的95%的置信区间的长度最短?,其概率密度为 记u的分布函数为F(x),则 而2的置信区间的长度为 (2) 而式(1)右端可见a,b之间存在隐函数关系,不妨设b是a的函数,从而由式(2),L是a 的函数,为使L达到最小值,必须

4、 即 b2=a2b (3) 式(1)两边关于a求导,并注意F(x)=F(x)0(x0)得F(b)b-F(a)=0,即 f(b)b-f(a)=0, 所以 (4) 将式(4)代入式(3)得 8. 函数在一点附近有界是函数在该点有极限的( )A.必要条件B.充分条件C.充分必要条件D.在一定条件下存在参考答案:D9. 试证明: 设f(x)在R1上具有介值性,若对任意的rQ,点集xR1:f(x)=r必为闭集,则fC(R1)试证明:设f(x)在R1上具有介值性,若对任意的rQ,点集xR1:f(x)=r必为闭集,则fC(R1)证明 反证法,假定x0R1是f(x)的不连续点,即存在00以及xnx0(n),使

5、得 |f(xn)-f(x0)|0,|xn-x|1/n 不妨设f(x0)f(x0)+0f(xn)(nN),取rQ:f(x0)rf(x0)+,则由题设知,存在n(位于x0与xn之间),使得f(n)=r现在令n,根据点集x:f(x)=r的闭集性,可知f(x0)=r这一矛盾说明fC(R1) 10. 求函数在此点的内法线方向上的导数求函数在此点的内法线方向上的导数11. 设函数f(x)=x+1,当0xA.跳跃间断点B.可去间断点C.连续但不可导点D.可导点参考答案:C12. 现有10年期面值1000元的债券,半年换算名息率为8.4%,兑现值为1050元若前5年的半年换算名收益率为10%,后5年现有10年

6、期面值1000元的债券,半年换算名息率为8.4%,兑现值为1050元若前5年的半年换算名收益率为10%,后5年的半年换算名收益率为9%,计算该债券的价格所有息票的现值为 而兑现值的现值为 1050(1+0.05)-10(1+0.045)-10元=415.08元, 故所求债券价格为 528.33元+415.08元=943.41元 13. f(x)=m|x+1|+n|x-1|,在(-,+)上( )A.连续B.仅有两个间断点x=1,它们都是可去间断点C.仅有两个间断点x=1,它们都是跳跃间断点D.以上都不对,其连续性与常数m,n有关参考答案:A14. 在球面坐标系中,证明A=为有势场,并求其势函数在

7、球面坐标系中,证明A=为有势场,并求其势函数在球面坐标系中 以,A=A=0代入,得 故A为有势场因此,存在势函数满足 A=-grad 即 于是有,, 由后两个方程,知与、均无关,仅为r的函数所以,积分第一个方程,即得势函数 如果用公式法求势函数,由于A为有势场,且,A=A=0,则 15. 已知某人在求职过程中,每次求职成功的概率都是0.4,问他要求职多少次,才能有90%的把握获得一个就业机会?已知某人在求职过程中,每次求职成功的概率都是0.4,问他要求职多少次,才能有90%的把握获得一个就业机会?用A表示求职n次至少有一次获得一个就业机会,则表示求职n次没有获得任何就业机会,依题意,即1-(1

8、-0.4)n0.9,解之得n4.5所以至少要求职5次,才能有90%的把握获得一个就业机会16. 设随机变量X(5),求k,使得概率PX=k在分布律中最大设随机变量X(5),求k,使得概率PX=k在分布律中最大泊松分布 已知X(5),则其分布律为计算相邻两项的比值,得 当k4时,pk+1pk;当k4时,pk+1pk因此,最大值在k=4,或k=5时取到计算得,即共有两项最大 17. 求直线L在平面:x-y+z+8=0上的投影直线方程求直线L在平面:x-y+z+8=0上的投影直线方程18. 运输问题有可行解的充要条件是运输问题有可行解的充要条件是必要性,设xij(0)是问题的可行解,则有 从而有 充

9、分性记,令 (i=1,2,m;j=1,2,n),则易验证(xij)满足问题,即xij)是运输问题的一个可行解 19. 设f(x)=e3x,则f&39;&39;(0)=( )。 A1 B3 C9 D9e设f(x)=e3x,则f(0)=()。A1B3C9D9eC20. 一枚硬币前后掷两次所出现可能结果的全部所组成的集合,可表示为( )A.正面,反面B.(正面,正面)、(反面,反面)C.(正面,反面)、(反面,正面)D.(正面,正面)、(反面,正面)、(正面,反面)、(反面,反面)参考答案:D21. 设f(x),g(x)在0,1上的导数连续,且f(0)=0,f(x)0,g(x)0,证明:对任何a0,

10、1有设f(x),g(x)在0,1上的导数连续,且f(0)=0,f(x)0,g(x)0,证明:对任何a0,1有证法1设 则F(x)在0,1上可导,并且 F(x)=g(x)f(x)-f(x)g(1)=f(x)g(x)-g(1) 由于x0,1时,f(x)0,g(x)0,表明g(x)在0,1上广义单调增加,所以F(x)0,即F(x)在0,1上广义单调减少 注意到 而故F(1)=0 因此,x0,1时,F(x)0,由此可得对任何a0,1,有 证法2 因为所以 又由于x0,1时,f(x)0,所以f(x)在0,1上广义单调增加,则有f(x)f(a),对于任意xa,1 又由题设,当x0,1时,有g(x)0,所以

11、 f(x)g(x)f(a)g(x),xa,1于是 从而 注 在证法2中,证明“”时用到了f(x)的单增性和积分性质,在这一步骤中,可以用积分中值定理,具体证明如下: 由积分中值定理知,存在a,1,使 一般来说,有关定积分的等式或不等式的证明,可将某一积分上限换成x,从而将问题转化为一个有关函数的等式或不等式问题,再通过研究该函数的性态来达到证明的目的,如果用该思路来证明本问题,可考查考生对定积分变上限函数的导数的理解和计算以及利用导数判断函数单调性的掌握,另外,通过对不等式左边的两个被积函数形式的考察,可以想到用定积分的分部积分法来变形,所以本题一般可用以下两种方法证明 22. 顶点为(2,1

12、,0),轴为,母线和轴夹角为的圆锥面方程是_,(请用x,y,z的一个关系式表示)顶点为(2,1,0),轴为,母线和轴夹角为的圆锥面方程是_,(请用x,y,z的一个关系式表示)2(3x+4y+z-10)2=13(x-2)2+(y-1)2+z223. 单叶双曲面,过点(1,0,0)的所有直母线方程为_。单叶双曲面,过点(1,0,0)的所有直母线方程为_。和24. (哈达玛不等式)设A=detaik为n级行列式,其中之元素均为实数而合条件ak12+ak22+akn2=1,(k=1,2,n). 则(哈达玛不等式)设A=detaik为n级行列式,其中之元素均为实数而合条件ak12+ak22+akn2=1,(k=1,2,n).则必|A|1证明要应用拉格朗日乘数法来证显然本题中的辅助方程(条件方程)为 k=ak12+ak22+akn2-1=0,(k=1,2,n) 以k表乘数,置 于是从方程 得等式Ajk+jajk=0其中Ajk为A中之ajk元素所对应的子行列式 于等式两端乘以ajk并对k=1,2,n而求和,则得 A+j=0,(j=1,2,n)因之,j=-A亦即Ajk=Aajk,(j,k=1,2,n)故得出 ,亦即An-1=An+1由于A的极大极小值必须合于上列方程,故不

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号