《2020【湘教版】八年级数学下册期末复习1直角三角形含答案》由会员分享,可在线阅读,更多相关《2020【湘教版】八年级数学下册期末复习1直角三角形含答案(10页珍藏版)》请在金锄头文库上搜索。
1、2019-2020学年湘教版数学精品资料期末复习(一) 直角三角形考点一 直角三角形的性质【例1】如图,在ABC中,BF,CE分别是AC,AB两边上的高,D为BC中点,试说明DEF是等腰三角形.【分析】D为BC中点,又BEC和BFC是直角三角形,故可利用直角三角形斜边中线的性质得DE=DF=BC.【解答】BF,CE分别是AC,AB两边上的高,BEC=BFC=90.又D为BC中点,DE=BC,DF=BC.DE=DF.DEF是等腰三角形.【方法归纳】由直角三角形斜边中线的性质可得到边之间的关系.变式练习1.如图,在直角三角形ABC中,ACAB,AD是斜边BC上的高,DEAC,DFAB,垂足分别为E
2、,F,则图中与C(除C外)相等的角的个数是( ) A.2 B.3 C.4 D.52.在ABC中,AB=AC,A=120,AB的垂直平分线交BC于点D,交AB于点E.如果DE=1,求BC的长.考点二 直角三角形的判定【例2】如图,已知ABCD,PA,PC分别平分BAC和ACD.试判断APC的形状,并说明理由.【分析】由ABCD可得BAC+ACD=180.又由PA,PB两条平分线,可证明1+2=90,从而得到APC为直角三角形.【解答】PA,PC分别平分BAC和ACD,BAC=21,ACD=22.ABCD,BAC+ACD=180.21+22=180.1+2=90.APC=90.APC是直角三角形.
3、【方法归纳】由角来判断一个三角形是直角三角形,只要说明这个三角形中有一个直角或有两个角互余即可.3.已知:如图,在ABC中,ADBC,1=B.求证:ABC是直角三角形.考点三 勾股定理【例3】如图,四边形ABCD,AB=AD=2,BC=3,CD=1,A=90,求ADC的度数.【分析】首先在RtBAD中,利用勾股定理求出BD的长,而由题意可知,ABD为等腰直角三角形,则ADB=45,再根据勾股定理逆定理在BCD中,证明BCD是直角三角形,即可求出答案.【解答】连接BD.在RtBAD中,AB=AD=2,ADB=45,BD=2.在BCD中,DB2+CD2=(2)2+12=9=CB2,BCD是直角三角
4、形.BDC=90.ADC=ADB+BDC=45+90=135.【方法归纳】当不能直接求一个角的度数时,可通过作辅助线,求几个角的和或差.4.已知三组数据:2,3,4;3,4,5;1,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A. B. C. D.5.如图,已知ABC中,ACB90,AB5 cm.BC3 cm,CDAB于点D,求CD的长.考点四 直角三角形全等的判定【例4】如图,已知ABBD,CDBD,AD=CB,求证:ADBC.【分析】要证ADBC,可证ADB=CBD,这由RtADBRtCBD(HL)可以得到.【解答】ABBD,CDBD,ABDCDB=90.在Rt
5、ADB和RtCBD中,AD=CB,BD=DB,RtADBRtCBD(HL).ADB=CBD.ADBC.【方法归纳】用HL证明三角形全等时,需指明直角三角形.6.如图,四边形ABCD中,CB=CD,ABC=ADC=90,BAC=35,则BCD的度数为( ) A.145 B.130 C.110 D.70考点五 角平分线的性质与判定【例5】如图,ABC中,B的平分线与C的外角的平分线交于P点,PDAC于D,PHBA于H,求证:AP平分HAD.【分析】过P作PFBE于F,根据角平分线的性质可得PH=PF,PF=PD,有PD=PH,再根据角平分线的判定可得结论.【解答】过P作PFBE于F,BP平分ABC
6、,PHBA,PFBE,PH=PF.又CP平分ACE,PDAC,PFBE,PF=PD.PD=PH.又PHBA,PDAC,AP平分HAD.【方法归纳】此题主要考查角平分线定理及逆定理;准确作出辅助线是解答本题的关键,解决与角平分线有关的问题常常用到作垂线之类的辅助线.7.如图,OC是AOB的平分线,P是OC上一点,PDOA于点D,PEOB于点E,若点Q是OC上与点O,P不重合的另一点,则以下结论中,不一定成立的是( ) A.PD=PE B.OCDE且OC平分DE C.QO平分DQE D.DEQ是等边三角形复习测试一、选择题(每小题3分,共30分)1.如图,l1l2,l3l4,1=42,那么2的度数
7、为( ) A.48 B.42 C.38 D.212.RtABC中,C=90,一个锐角为30,最短边长为5 cm,则最长边上的中线是( ) A.5 cm B.15 cm C.10 cm D.2.5 cm3.下列说法中:如果A+B=C,那么ABC是直角三角形;如果ABC=123,那么三角形是直角三角形;如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;有一个角是直角的三角形是直角三角形.正确的有( ) A.1个 B.2个 C.3个 D.4个4.以下列长度的线段为边,能构成直角三角形的是( ) A.1,2,3 B.9,12,15 C.3,5,7 D.8,13,155.如图,为了测得湖
8、两岸A点和B点之间的距离,一个观测者在C点设桩,使ABC=90,并测得AC长20米,BC长16米,则A点和B点之间的距离为( ) A.25米 B.12米 C.13米 D.4米6.如图,在ABC中,C=90,B=30,AD是BAC的平分线,若CD=2,则BD等于( ) A.6 B.4 C.3 D.27.如图,ABAC于点A,BDCD于点D,若AC=DB,则下列结论中不正确的是( ) A.A=D B.ABC=DCB C.OB=OD D.OA=OD8.如图,ABC中B的外角平分线BD与C的外角平分线CE相交于点P,若点P到AC的距离为2,则点P到AB的距离为( ) A.1 B.2 C.3 D.49.
9、如图,ABC中,ACB=90,AE=AC=8,BF=BC=15,则EF长为( ) A.3 B.4 C.5 D.610.如图,由四个全等的直角三角形与中间的小正方形拼成的大正方形图案是某届国际数学大会的会标,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a和b,那么(a+b)2的值为( ) A.256 B.169 C.29 D.48二、填空题(每小题3分,共18分)11.如图,ABC中,AB=AC,ADAB交BC于点D,且CAD=30,CD=2,则BD=_.12.如图,在直角三角形ABC中,C=90,一条线段PQ=AB,点P,Q两点分别在AC和AC的垂线AX上移动,当A
10、P=_时,才能使ABCQPA.13.在RtABC中,C=90,A=30,AB上的中线CD的长2 cm,那么BC=_cm.14.如图,在RtABC中,A=90,BD平分ABC交AC于点D,SBDC=4,BC=8,则AD=_.15.如图,在直角梯形ABCD中,ADBC,C=90,A=120,AD=2,BD平分ABC,则梯形ABCD的周长是_.16.利用图1或图2两个图形中的有关面积的等量关系能证明数学中一个十分著名的定理,这个定理称为_,该定理的结论其数学表达式是_.三、解答题(共52分)17.(8分)如图,已知ABC和ABD均为直角三角形,其中ACB=ADB=90,E为AB的中点,求证:CE=D
11、E.18.(10分)已知A=B=90,BCD,ADC的平分线交AB于点E.求证:AE=BE.19.(10分)小明拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?20.(12分)如图,在ABC中,AB=AC,DE是过点A的直线,BDDE于点D,CEDE于点E. (1)若点B,C在DE的同侧(如图1所示),且AD=CE.求证:ABAC; (2)若点B,C在DE的两侧(如图2所示),其他条件不变,AB与AC仍垂直吗?若是,请给出证明;若不是,请说明理由.21.(12分)如图,ACB和ECD都是等腰直角三角形,ACB=ECD=90,D为AB边上一点,求证: (1)ACEBCD; (2)AD2+DB2=DE2.参考答案变式练习1.B2.连接AD. DE垂直平分AB, AD=BD,DEB=90. AB=AC,BAC=120, B=C=30. 在RtBDE中,B=30, DE=BD. BD=2. AD=BD, BAD=B. DAC=BAC-BAD=120-30=90, 而C=30. AD=CD,CD=2AD=2BD=4, 故有:BC=CD+BD=4+2=6.3.证明:ADBC,BAD+B=90.1=B,1+BAD=BAC=90.ABC是直角三角形.4.D5.ABC是直角三角形, AC2+BC2