回归分析练习题及参考答案

上传人:ni****g 文档编号:552600671 上传时间:2023-11-14 格式:DOC 页数:12 大小:287.50KB
返回 下载 相关 举报
回归分析练习题及参考答案_第1页
第1页 / 共12页
回归分析练习题及参考答案_第2页
第2页 / 共12页
回归分析练习题及参考答案_第3页
第3页 / 共12页
回归分析练习题及参考答案_第4页
第4页 / 共12页
回归分析练习题及参考答案_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《回归分析练习题及参考答案》由会员分享,可在线阅读,更多相关《回归分析练习题及参考答案(12页珍藏版)》请在金锄头文库上搜索。

1、.1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据: 地区 人均GDP/元 人均消费水平/元 北京 辽宁 上海 江西 河南 贵州 陕西 22460 11226 34547 4851 5444 2662 4549 7326 4490 11546 2396 2208 1608 2035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 (5)检验回归方程线性关系的显著性(

2、)。 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95的置信区间和预测区间。解:(1)可能存在线性关系。(2)相关系数:系数a模型非标准化系数标准系数tSig.相关性B标准 误差试用版零阶偏部分1(常量)734.693139.5405.265.003人均GDP.309.008.99836.492.000.998.998.998a. 因变量: 人均消费水平有很强的线性关系。(3)回归方程:系数a模型非标准化系数标准系数tSig.相关性B标准 误差试用版零阶偏部分1(常量)734.693139.5405.265.003人均GDP.3

3、09.008.99836.492.000.998.998.998a. 因变量: 人均消费水平回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。系数(a)模型 非标准化系数标准化系数t显著性B标准误Beta1(常量)734.693139.5405.2650.003人均GDP(元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%(4)模型汇总模型RR 方调整 R 方标准 估计的误差1.998a.996.996247.303a. 预测变量: (常量), 人均GDP。人均GDP对人均消费

4、的影响达到99.6%。%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。模型摘要模型RR 方调整的 R 方估计的标准差1.998(a)0.9960.996247.303a. 预测变量:(常量), 人均GDP(元)。%(5)F检验:Anovab模型平方和df均方FSig.1回归81444968.680181444968.6801331.692.000a残差305795.034561159.007总计81750763.7146a. 预测变量: (常量), 人均GDP。b. 因变量: 人均消费水平回归系数的检验:t检验系数a模型非标准化系数标准系数tSig.相关性B标准 误差试用版零阶偏

5、部分1(常量)734.693139.5405.265.003人均GDP.309.008.99836.492.000.998.998.998a. 因变量: 人均消费水平%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。系数(a)模型 非标准化系数标准化系数t显著性B标准误Beta1(常量)734.693139.5405.2650.003人均GDP(元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%(6)某地区的人均GDP为5000元,预测其人均消费水平为(元)。(7)人均GDP为5000元时,人均消费水平95的置信区间为1990.74915,

6、2565.46399,预测区间为1580.46315,2975.74999。2 从n=20的样本中得到的有关回归结果是:SSR(回归平方和)=60,SSE(误差平方和)=40。要检验x与y之间的线性关系是否显著,即检验假设:。 (1)线性关系检验的统计量F值是多少? (2)给定显著性水平,是多少? (3)是拒绝原假设还是不拒绝原假设? (4)假定x与y之间是负相关,计算相关系数r。 (5)检验x与y之间的线性关系是否显著?解:(1)SSR的自由度为k=1;SSE的自由度为n-k-1=18; 因此:F=27(2)=4.41(3)拒绝原假设,线性关系显著。(4)r=0.7746,由于是负相关,因此

7、r=-0.7746(5)从F检验看线性关系显著。3 随机抽取7家超市,得到其广告费支出和销售额数据如下: 超市 广告费支出/万元 销售额/万元 A B C D E F G l 2 4 6 10 14 20 19 32 44 40 52 53 54求:(1)用广告费支出作自变量x,销售额作因变量y,求出估计的回归方程。(2)检验广告费支出与销售额之间的线性关系是否显著()。(3)绘制关于x的残差图,你觉得关于误差项的假定被满足了吗? (4)你是选用这个模型,还是另寻找一个更好的模型?解:(1)系数(a)模型 非标准化系数标准化系数t显著性B标准误Beta1(常量)29.3994.8076.116

8、0.002广告费支出(万元)1.5470.4630.8313.3390.021a. 因变量: 销售额(万元)(2)回归直线的F检验:ANOVA(b)模型 平方和df均方F显著性1回归691.7231691.72311.147.021(a)残差310.277562.055合计1,002.0006a. 预测变量:(常量), 广告费支出(万元)。b. 因变量: 销售额(万元)显著。回归系数的t检验:系数(a)模型 非标准化系数标准化系数t显著性B标准误Beta1(常量)29.3994.8076.1160.002广告费支出(万元)1.5470.4630.8313.3390.021a. 因变量: 销售额

9、(万元)显著。(3)未标准化残差图:_标准化残差图:学生氏标准化残差图:看到残差不全相等。(4)应考虑其他模型。可考虑对数曲线模型:y=b0+b1ln(x)=22.471+11.576ln(x)。4 根据下面SPSS输出的回归结果,说明模型中涉及多少个自变量?多少个观察值?写出回归方程,并根据F,se,R2及调整的的值对模型进行讨论。模型汇总b模型RR 方调整 R 方标准 估计的误差10.8424070.7096500.630463109.429596Anovab模型平方和df均方FSig.1回归321946.80183107315.60068.9617590.002724残差131723.1

10、9821111974.84总计45367014系数a模型非标准化系数tSig.B标准 误差1(常量)657.0534167.4595393.9236550.002378VAR00002VAR00003VAR000045.710311-0.416917-3.4714811.7918360.3221931.4429353.186849-1.293998-2.4058470.0086550.2221740.034870解:自变量3个,观察值15个。回归方程:=657.0534+5.710311X1-0.416917X2-3.471481X3拟合优度:判定系数R2=0.70965,调整的=0.6304

11、63,说明三个自变量对因变量的影响的比例占到63%。 估计的标准误差=109.429596,说明随即变动程度为109.429596回归方程的检验:F检验的P=0.002724,在显著性为5%的情况下,整个回归方程线性关系显著。回归系数的检验:的t检验的P=0.008655,在显著性为5%的情况下,y与X1线性关系显著。的t检验的P=0.222174,在显著性为5%的情况下,y与X2线性关系不显著。的t检验的P=0.034870,在显著性为5%的情况下,y与X3线性关系显著。因此,可以考虑采用逐步回归去除X2,从新构建线性回归模型。5 下面是随机抽取的15家大型商场销售的同类产品的有关数据(单位:元)。企业编号 销售价格y 购进价格x1 销售费用x2 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 l238 l266 l200 1193 1106 1303 1313 1144 1286 l084 l120 1156 1083 1263 1246 966 894 4

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 绿化工程

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号