《浙江省温州九校2023学年高三(最后冲刺)数学试卷(含解析).doc》由会员分享,可在线阅读,更多相关《浙江省温州九校2023学年高三(最后冲刺)数学试卷(含解析).doc(20页珍藏版)》请在金锄头文库上搜索。
1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD2已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD3为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间
2、)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为( )ABCD4以下关于的命题,正确的是A函数在区间上单调递增B直线需是函数图象的一条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象5百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机
3、数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( )ABCD6关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像7将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点
4、对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根8高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1009周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为( )ABCD10已知等比数列的各项均为正数,设其前n项和,若(),则( )A30BCD6211已知椭圆
5、:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD12如图,是圆的一条直径,为半圆弧的两个三等分点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足约束条件则的最大值为_14某种产品的质量指标值服从正态分布,且某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_15已知全集,则_.16若函数为偶函数,则 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,且(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,
6、与的大小,并说明理由18(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.19(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.20(12分)在中,角的对边分别为.已
7、知,且.(1)求的值;(2)若的面积是,求的周长.21(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.22(10分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【题目详解】设分别是的中点平面 是等边三角形 又平面 为
8、与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【答案点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题2、B【答案解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.3、D【答案解析】过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点
9、,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【题目详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,., ,为的中点,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【答案点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.4、D【答案解析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【答案点睛】本题考查了三角函数的单调性,对称轴,对称中
10、心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.5、A【答案解析】由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【题目详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【答案点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.6、B【答案解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称
11、的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【答案点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.7、C【答案解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【题目详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知
12、,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【答案点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.8、D【答案解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【答案点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.9、B【答案解析】基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【
13、题目详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【答案点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题10、B【答案解析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【题目详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:
14、,因此.故选:B【答案点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.11、C【答案解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【题目详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【答案点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.12、B【答案解析】连接、,即可得到,再根据平面向量的数量积及运算律计算可得;【题目详解】解:连接、,是半圆弧的两个三等分点, ,且,所以四边形为棱形,故选:B【答案点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【题目详解】作出约束条