《52平面直角坐标系(1)(2)(3).doc》由会员分享,可在线阅读,更多相关《52平面直角坐标系(1)(2)(3).doc(8页珍藏版)》请在金锄头文库上搜索。
1、课题:5.2平面直角坐标系第一课时教学目标:【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。2、认识并能画出平面直角坐标系。3、能在给定的直角坐标系中,由点的位置写出它的坐标。【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学
2、学习活动的积极性和好奇心。教学重点:1、 理解平面直角坐标系的有关知识。2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:1、 横(或纵)坐标相同的点的连线与坐标轴的关系的探究。2、 坐标轴上点的坐标有什么特点的总结。教学方法:讨论式学习法教学过程设计:一、导入新课 师 :同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图56)(1) 你是怎样确定各个景点位置的? (2)
3、 “大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3) 如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。在这个问题中大家看用哪种方法比较合适? 生 :用反映直角坐标思想的定位方式。师 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的任务。 二、新课学习1、 平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的
4、定义和象限的划分。师 :看书,倒数第二段P130 P131第一段。(三分钟后)请一位同学加以叙述。生 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。通常,有序实数对(a,b)叫做点P的坐标。师 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思考后回答。生 :(2)“大成殿”在“中心广场”南两格,西两格。“碑林”在“中心广场”北一格,东三格。(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,1)。“大成殿”的位置是(2,2)。师 :很好,在(3)的条件下,你能把其他
5、景点的位置表示出来吗?生 :能,钟楼的位置是(2,1),雁塔的位置是(0,3),影月湖的位置是(0,5),科技大学的位置是(5,7)。2、 例题讲解 (出示投影)例1 书P131。 例1 写出图中的多边形ABCDEF各各顶点的坐标。让学生回答。师 :上图中各顶点的坐标是否永远不变?生甲 :是。生乙 :不是。当坐标轴的位置发生变动时,各点的坐标相应地变化。师 :你能举个例子吗?生 :可以,若以线段BC所在的直线为x轴,纵轴(y轴位置不变,则六个顶点的坐标分别为:A(2,3),B(0,3),C(3,0),D(4,3),E(3,6),F(0,6)师 :那大家再思考这位同学的结论是否是永恒的呢?生 :
6、不是。还能再改变坐标轴的位置,得出不同的坐标。师 :请大家在课后继续进行坐标轴的变换,总结以一下共有多少种。 3、想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?师 :由B(0,3),C(3,3)可以看出它们的纵坐标相同,即B、C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。请大家讨论第(2)题。生 :由C(3,3),E(3,3)可知,他们的横坐标相同,即C、E两点到y轴的距离相等,所以线段CE平行于纵轴(y轴),垂直于横轴(x轴)师 :请大家找出坐标轴上的点。生 :B(0,3)
7、,A(2,0),D(4,0),F(0,3)师 :这些点的坐标中由什么特点呢?生 :坐标中都有一个数字是0。师 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。当两个数字为0时,这个点是否在坐标轴上?生 :当两个数字都为0时,就是坐标原点(0,0),原点既在x轴上,又在y轴上。师 :那如何确定在哪个坐标轴上呢?生 :A(2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B(0,3),F(0,3)在y轴上,可知它们的横坐标为0,纵坐标不为0。师 :经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴
8、上的点的横坐标为0。师 :刚才已知x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。各个象限内的点的坐标特征是怎样的?生 :第一象限(,), 第二象限(,),第三象限(,), 第四象限(,)。4、做一做(出示投影) 书P131师 :请大家先独立思考,然后再进行交流。生 :A(3,4),B(6,2),C(6,2),D(9,4) A与D两点的纵坐标,B与C两点的纵坐标相同,因为AD、BC分别平行于横轴,A与B,C与D的横坐标不同,因为AB与CD是与x轴斜交,他们向横轴作垂线,垂足不同。三、随堂练习补充:1、在下图中,确定A、B、C、D、E、F、G的坐标。 (第1题) (第2题)
9、2、如右图,求出A、B、C、D、E、F的坐标。四、本课小结1、 认识并能画出平面直角坐标系。2、 在给定的直角坐标系中,由点的位置写出它的坐标。3、 能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4、 横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5、 坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6、各个象限内的点的坐标特征是:第一象限(,), 第二象限(,),第三象限(,), 第四象限(,)。五、课后作业书P132 习题5.3第二课时教学目标:【知识目标】:1、在给定的直角坐标系下,会根据坐标描出点的位置。 2、通过找点、连线、观
10、察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。【能力目标】:1、经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力。2、通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。【情感目标】通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。教学重点: 在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。教学难点: 在已知的直角坐标系下找点、连线、观察,确定图形的大致形状教学方法: 导学法教具准备:方格纸若干张教学过程设计:一、 导入新课师 :在上节课中我们学习了平面直角
11、坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。练习:指出下列各点所在象限或坐标轴:A(1,2.5),B(3,4),C(,5),D(3,6),E(2.3,0),F(0,), G(0,0) (抽生答)师 :由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。二、 新知学习1、师 :请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中
12、描点,并依次用线段连接起来。(9,3),(9,0),(3,0),(3,3)(学生操作完毕后)师 :下面大家看和我画的一样吗?生 :一样。师 :这是一个什么图形?生 :长方形。2、(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。(1)(6,5),(10,3),(9,3),(3,3),(2,3),(6,5);(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。观察所得的图形,你觉得它象什么?师 :分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快? (学生操作) 师 :(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么? 生 :这个图形像一栋“房子”旁边还有一棵“大树”。3、做一做 (出示投影)书 P134师 :在书上已建立的直角坐标系画,要求每位同学独立完成。(学生描点、画图)师 :(拿出一位做对的学生的作品投影) 你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?生 :像猫脸。三、随堂练习