安徽省芜湖市部分学校2024年八年级下册数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.若分式的值为0,则x的值是( )A.0 B.1 C.0或1 D.0或1或-12.下列关系式中:y=﹣3x+1、、y=x2+1、y=,y是x的一次函数的有( )A.1个 B.2个 C.3个 D.4个3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是( )A.正三角形 B.正方形 C.正五边形 D.正六边形4.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD的度数为( )A.65° B.60° C.55° D.45°5.若a使得关于x的分式方程 有正整数解。
且函数y=ax−2x−3与y=2x−1的图象有交点,则满足条件的所有整数a的个数为( )A.1 B.2 C.3 D.46.若分式方程有增根,则m等于( )A.-3 B.-2 C.3 D.27.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )A.斜边长为10cm B.周长为25cmC.面积为24cm2 D.斜边上的中线长为5cm8.一个正多边形的内角和是1440°,则它的每个外角的度数是( )A.30° B.36° C.45° D.60°9.下列函数中,表示y是x的正比例函数的是( ).A. B. C. D.10.不等式2x-1≤3的解集是( )A.x≤1 B.x≤2 C.x≥1 D.x≤-2二、填空题(每小题3分,共24分)11.一个多边形的每个外角都是,则这个多边形的边数是________.12.若代数式有意义,则实数的取值范围是_________.13.若y=,则x+y= .14.若不等式组恰有两个整数解,则m的取值范围是__________.15.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________16.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).17.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
18.廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)432l0人数34111则这10名学生周末利用网络进行学习的平均时间是________小时.三、解答题(共66分)19.(10分)如图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD ≌ △EFC.20.(6分)反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.(1)求的值并结合图像求出的取值范围;(2)在点运动过程中,求线段最短时点的坐标;(3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;(4)在点运动过程中使得求出此时的面积.21.(6分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.(1)求证:四边形ABCE是菱形;(2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.22.(8分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。
两车同时出发,匀速行驶图2是客车、货车离C站的路程y ,y (千米)与行驶时间x(小时)之间的函数关系图象1)填空:A,B两地相距___千米;货车的速度是___千米/时2)求两小时后,货车离C站的路程y 与行驶时间x之间的函数表达式;(3)客、货两车何时距离不大于30km?23.(8分)如图,已知直线y1经过点A(-1,0)与点B(2.3),另一条直线y2经过点B,且与x轴交于点P(m.0).(1)求直线y1的解析式;(2)若三角形ABP的面积为,求m的值.24.(8分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.(10分)已知正比例函数和反比例函数的图象都经过点 A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线 OA 向下平移后得到直线 l,与反比例函数的图象交于点 B(6,m),求 m 的值和直线 l 的解 析式;(3)在(2)中的直线 l 与 x 轴、y 轴分别交于 C、D,求四边形 OABC 的面积.26.(10分)在一张足够大的纸板上截取一个面积为的矩形纸板,如图,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形,如图,设小正方形的边长为厘米.、(1)若矩形纸板的一个边长为.①当纸盒的底面积为时,求的值;②求纸盒的侧面积的最大值;(2)当,且侧面积与底面积之比为时,求的值.参考答案一、选择题(每小题3分,共30分)1、A【解析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵=0,∴x−x=0,即x(x−1)=0,x=0或x=1,又∵x−1≠0,∴x≠±1,综上得,x=0.故选A.【点睛】此题考查分式的值为零的条件,解题关键在于掌握运算法则2、B【解析】形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:函数y=﹣3x+1,,y=x2+1,y=中,y是x的一次函数的是:y=﹣3x+1、y=,共2个.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.3、C【解析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.4、C【解析】由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD度数.【详解】解:由作法可知,MN为垂直平分线,∴BD=CD,∴∠BCD=∠B=30°,∵∠A=65°,∴∠ACB=180°-∠A-∠B=85°,∴∠ACD=∠ACB-∠BCD=85°-30°=55°.故选:C.【点睛】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.5、D【解析】先解分式方程,求得a的值,再由函数图象有交点求得a的取值范围,则可求得a的值,可求得答案.【详解】解分式方程可得x=4−,∵a使得关于x的分式方程有正整数解,∴a的值为0、2、4、6,联立y=ax−2x−3与y=2x−1,消去y,整理可得ax−4x−2=0,由函数图象有交点,可知方程ax−4x−2=0有实数根,当a=0时,方程有实数解,满足条件,当a≠0时,则有△⩾0,即16+8a⩾0,解得a⩾−2且a≠0,∴满足条件的a的值为0、2、4、6,共4个,故选D.【点睛】此题考查分式方程的解,二次函数的性质,一次函数的性质,解题关键在于求得a的值.6、B【解析】先去掉分母,再将增根x=1代入即可求出m的值.【详解】解,去分母得x-3=m把增根x=1代入得m=1-3=-2故选B.【点睛】此题主要考查分式方程的求解,解题的关键是熟知增根的含义.7、B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;∴斜边 故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.8、B【解析】先设该多边形是n边形,根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360除以边数可得外角度数.【详解】设这个多边形的边数为n,则(n-2)×180°=1440°,解得n=1.外角的度数为:360°÷1=36°,故选B.【点睛】此题考查了多边形的内角与外角,关键是根据多边形的内角和公式(n-2)•180°和多边形的外角和都是360°进行解答.9、B【解析】根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【详解】A、该函数不符合正比例函数的形式,故本选项错误.B、该函数是y关于x的正比例函数,故本选项正确.C、该函数是y关于x的一次函数,故本选项错误.D、该函数是y2关于x的函数,故本选项错误.故选B.【点睛】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.10、B【解析】首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.【详解】解:2x-1≤3,移项得:2x≤3+1,合并同类项得:2x≤4,把x的系数化为1得:x≤2,故选:B.【点睛】此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的。