安徽省合肥市、安庆市名校大联考2024年数学八年级下册期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题(每小题3分,共30分)1.把根号外的因式移入根号内,结果( )A. B. C. D.2.如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为( )A.5 B.6 C.8 D.103.在▱ABCD中,已知∠A=60°,则∠C的度数是( )A.30° B.60° C.120° D.60°或120°4.在中,,,,点为边上一动点,于点,于点,则的最小值为( )A. B. C. D.5.在下列各式中,(1),(2)x2y-3xy2,(3),(4),是分式的有( )A.(1).(2) B.(1).(3) C.(1).(4) D.(3).(4)6.某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为( )A.36件 B.37件 C.38件 D.38.5件7.若一组数据,0,2,4,的极差为7,则的值是( ).A. B.6 C.7 D.6或8.如果一组数据,,0,1,x,6,9,12的平均数为3,则x为 A.2 B.3 C. D.19.设表示两个数中的最大值,例如:,,则关于的函数可表示为( )A. B. C. D.10.估算在哪两个整数之间( )A.0和1 B.1和2 C.2和3 D.3和4二、填空题(每小题3分,共24分)11.命题“在中,如果,那么是等边三角形”的逆命题是_____.12.比较大小:__________.(用不等号连接)13.在一个内角为60°的菱形中,一条对角线长为16,则另一条对角线长等于_____.14.在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.15.某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.16.如图,,,,若,则的长为______.17.若关于的一元二次方程有两个相等的实数根,则的值是__________.18.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.三、解答题(共66分)19.(10分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影新多边形内角和比原多边形的内角和增加了.新多边形的内角和与原多边形的内角和相等.新多边形的内角和比原多边形的内角和减少了.将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.20.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.(1)求OD长的取值范围;(2)若∠CBD=30°,求OD的长.21.(6分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.22.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.23.(8分)如图,在四边形ABCD中,,E为边BC上一点,且EC=AD,连接AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,24.(8分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.(1)求证:∠ADG=∠DCF;(2)联结HO,试证明HO平分∠CHG.25.(10分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:(1)分别求出药物燃烧时及燃烧后 关于的函数表达式.(2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?(3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.26.(10分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)参考答案一、选择题(每小题3分,共30分)1、B【解析】根据 可得 ,所以移入括号内为进行计算即可.【详解】根据根式的性质可得,所以因此故选B.【点睛】本题主要考查根式的性质,关键在于求a的取值范围.2、A【解析】首先由勾股定理逆定理判断△ECF是直角三角形,由三角形中位线定理求出AB的长,最后根据直角三角形斜边上的中线等于斜边的一半求出CD的长即可.【详解】∵CF=3,CE=4,EF=5,∴CF2+CE2=EF2,∴△ECF是直角三角形,即△ABC也是直角三角形,∵E,F分别是CA、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=10,∵D为AB的中点,∴CD=AB= 故选:A.【点睛】此题主要考查了直角三角形的判定,三角形的中位线定理以及直角三角形斜边上的中线等于斜边的一半等知识,熟练掌握上述知识是解答此题的关键.3、B【解析】由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.4、B【解析】根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】解:∵在△ABC中,AB=3,AC=1,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.1,∴EF的最小值是2.1.故选B.【点睛】题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.5、B【解析】根据分式的定义看代数式中分母中含有字母的代数式为分式.【详解】x2y-3xy2和分母中不含有字母,为整式;和分母中含有字母为分式,故选B.【点睛】本题考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.6、B【解析】根据加权平均数的公式进行计算即可得.【详解】=37,即这周里张海日平均投递物品件数为37件,故选B.【点睛】本题考查了加权平均数的计算,熟知加权平均数的计算公式是解题的关键.7、D【解析】解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D8、D【解析】根据算术平均数的公式:可得:,进而可得:,解得:x=1.【详解】因为一组数据,,0,1,x,6,9,12的平均数为3,所以,所以,所以x=1.故选D.【点睛】本题主要考查算术平均数的计算公式,解决本题的关键是要熟练掌握算术平均数的计算公式.9、D【解析】由于3x与的大小不能确定,故应分两种情况进行讨论.【详解】当,即时,;当,即时,.故选D.【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.10、C【解析】原式化简后,估算即可确定出范围.【详解】解:原式=﹣+1=+1,∵,∴,即,则2﹣+1在2和3两个整数之间,故选:C.【点睛】本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.二、填空题(每小题3分,共24分)11、如果是等边三角形,那么.【解析】把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12、<【解析】先运用二次根式的性质把根号外的数移到根号内,即可解答【详解】∵= ∴<故答案为:<【点睛】此题考查实数大小比较,难度不大13、16或【解析】画出图形,根据菱形的性质,可得△ABC为等边三角形,分两种情况讨论,由直角三角形的性质可求解.【详解】由题意得,∠ABC=60°,AC=16,或BD=16∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,AO=OC,BO=OD,∠ABD=30°∴△ABC是等边三角形,∴AC=AB=BC当AC=16时,∴AO=8,AB=16∴BO=8 ∴BD=16当BD=16时,∴BO=8,且∠ABO=30°∴AO= ∴AC= 故答案为:16或【点睛】本题考查了菱形的性质,解答本题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.14、【解析】利用轴对称最短路径求法,得出A点关于BD的对称点为C点,再利用连接EC交BD于点P即为最短路径位置,利用勾股定理求出即可.【详解】解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度∵正方形ABCD中,BE=2,AE=1,∴BC=AB=3,∴CE= == ,故答案为.【点睛】本题考查利用轴对称求最短路径问题以及正方形的性质和勾股定理,利用正方形性质得出A,C关于BD对称是解。