《恒定电流》教案.doc

上传人:大米 文档编号:550541539 上传时间:2022-11-11 格式:DOC 页数:32 大小:222.50KB
返回 下载 相关 举报
《恒定电流》教案.doc_第1页
第1页 / 共32页
《恒定电流》教案.doc_第2页
第2页 / 共32页
《恒定电流》教案.doc_第3页
第3页 / 共32页
《恒定电流》教案.doc_第4页
第4页 / 共32页
《恒定电流》教案.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《《恒定电流》教案.doc》由会员分享,可在线阅读,更多相关《《恒定电流》教案.doc(32页珍藏版)》请在金锄头文库上搜索。

1、恒定电流第一节、电流、欧姆定律、电阻定律 一、教学目标1.了解电流形成的条件。2.掌握电流的概念,并能处理简单问题。3.巩固掌握欧姆定律,理解电阻概念。4.理解电阻伏安特性曲线,并能运用。5.掌握电阻定律,认识电阻率的物理意义。二、重点、难点分析1.电流的概念、电阻定律、欧姆定律是教学重点。2.电流概念、电阻的伏安特性曲线、电阻率对学生来说比较抽象,是教学中的难点。三、教具1.欧姆定律(伏安特性曲线)直流电源(稳压),电压表,电流表,滑动变阻器,导线若干,开关,待测电阻。2.电阻定律:电压表,电流表,直流电源,滑动变阻器,酒精灯,电阻丝(一根),自制电阻丝示教板。说明:电阻丝示教板上,有电阻丝

2、A,电阻丝B,其中B对折,其长度是A的两倍,电阻丝C是与A相同且等长的两根电阻丝并联而成。四、主要教学过程(一)引入新课前面学习场。电场对其中的电荷有力的作用,若是自由电荷在电场力作用下将发生定向移动。如:静电场中的导体在达到静电平衡状态之前,其中自由电荷在电场力作用下定向移动。电容器充放电过程中也有电荷定向移动。电荷的定向移动就形成了电流。(二)教学过程设计1.电流(1)什么是电流?大量电荷定向移动形成电流。(2)电流形成的条件:静电场中导体达到静电平衡之前有电荷定向移动;电容器充放电,用导体与电源两极相接。导体,有自由移动电荷,可以定向移动。同时导体也提供自由电荷定向移动的“路”。导体包括

3、金属、电解液等,自由电荷有电子、离子等。导体内有电场强度不为零的电场,或者说导体两端有电势差,从而自由电荷在电场力作用下定向移动。持续电流形成条件:要形成持续电流,导体中场强不能为零,要保持下去,导体两端保持电势差(电压)。电源的作用就是保持导体两端电压,使导体中有持续电流。导体中电流有强有弱,用一个物理量描述电荷定向移动的快慢,从而描述电流的强弱。(3)电流(I)量度:通过导体横截面的电量跟通过这些电量所用时间的比值。这样可以通过电荷定向移动的快慢来描述电流强弱,这个比值称为电流。单位:安培(A)1A=1C/s性质:标量。初中学过并联电路干路电流等于各支路电流之和。但电流是有方向的。(有方向

4、的量不一定是矢量,是否矢量关键看满不满足平行四边形法则。)电流方向的规定:正电荷定向移动的方向为电流方向,负电荷定向移动方向与电流方向相反。(4)电流分类:直流电里,若电流不变,就称为恒定电流,这是高中阶段电流知识的重点。前面讨论了电流,尤其是持续电流的形成,要求导体两端有电势差,即电压。电流与电压究竟有什么关系?这可利用实验来研究。实验1按电路图连接实验电路,R0为待测电阻(定值电阻)。闭合S后,移动滑动变阻器触头,记下触头在不同位置时电压表和电流表读数。电压表测得的是导体R0两端电压,电流表测得的是通过导体R0的电流,记录在下面表格中。把所得数据描绘在IU直角坐标系中,确定U和I之间的函数

5、关系。分析:这些点所在的曲线包不包括原点?包括,因为当U=0时,I=0。这些点所在曲线是一条什么曲线?过原点的斜直线。把R0换成与之不同的R0,重复前面步骤,可得另一条不同的但过原点的斜直线。结论:给定导体,导体中电流与导体两端电压成正比,IUI=kU对不同导体图象斜率k不同。相同电压U0下,两导体电流分别为I1、I2,I1I2,导体2对电流阻碍作用比导体1大,I1=k1U。I2=k2U。2.欧姆定律:导体中电流跟它两端电压成正比,跟它的电阻成反比。大量实验表明,欧姆定律适用于纯电阻电路(金属、电解液等)。3.电阻(1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。(2)量度式:

6、R=U/I说明:对于给定导体,R一定,不存在R与U成正比,与I成反比的关系。这个式子(定义)给出了测量电阻的方法伏安法。(3)单位:电压单位用伏特(V),电流单位用安培(A),电阻单位用欧姆,符号,且1=1V/A常用单位: 1k=10001M=106电阻是导体的特性,电阻与导体的哪些因素有关?(4)影响电阻的因素:电阻反映了导体对电流的阻碍作用,导体越长,阻碍作用会不会越大?导体横截面积越大,电压不变,单位时间里通过电荷将增加,从而电阻变小。实验2按如图所示电路,依次将 A、 B、 C三段电阻丝分别接入电路中,利用 R=U/I测出三段电阻丝电阻,并加以比较。应指出:B电阻丝长度是A的2倍,测出

7、电阻也约为A的2倍。说明:RL C电阻丝与A等长,为了改变横截面积,C的两根电阻丝并排连入电路中,相当于横截面积增加1倍,测出电阻比A电阻小,约为A电阻的一半。体k不同。 k反映了材料导电性质,称作电阻率,用表示。时,在数值上等于R。强调:的大小由导体材料决定。 的大小与温度有关,一般随温度升高而增大。实验3:把单独一根电阻丝接入前图所示电路中,测出电阻来,用酒精灯加热。再看电压表、电流表读数,可以计算出电阻,从而判断电阻增大了。总结:电阻定律导体电阻跟它长度成正比,跟它的横截面积成反比。(三)复习巩固导体两端电压U不变,导体电阻率,长L,横截面积S,问经过t秒后,通过导体任一截面的电量。若U

8、、t不变,导体材料也不变,要让通过导体横截面的电量加倍,可采用什么办法?若U、t及导体体积都不变,导体材料给定,要让通过导体截面的电量加倍,可采用什么办法?第二节 欧姆定律教学目的:掌握电阻的概念,掌握欧姆定律。教学仪器:滑线变阻器()定值电阻()电压表()电流表()电键()干电池()导线(若干)教学过程:复习引入:(1)导体中产生电流的条件是什么? (2)既然导体两端有电压,导体中才有电流,那么导体中的电流强度跟导体两端的电压有什么关系呢本节课我们就来复习这个问题(欧姆定律)讲授新课:1 导体中的电流与导体两端电压的关系演示实验:(1)在如图所示的电路中,连接着一段导线AB,导线两端的电压可

9、由电压表读出,导线中通过的电流可由电流表读出。改变滑动片P的位置,可以改变导线两端的电压。测得一组数据如下表:电压(V)020406080100电流(A)0020040060078098数据处理:为了更明显,用直角坐标系表示出IU的关系, 根据测得的数据画出IU的关系图线,得到一条直线()表 明:导线AB中的电流跟它两端的电压成正比,且对AB这根导线来说,比值U/I=10是个定值,这个比值不随U或I的改变而改变,是导线本身的一种性质。(2)用一段更细的导线CD代替AB,重做实验。电压(V)020406080100电流(A)0013028040054066数据处理:根据数据作出IU关系图线,得到

10、一条直线()表 明:导线CD中的电流跟它两端的电压成正比,且对CD来说,比值U/I=15是个定值,这个比值不随U或I的改变而改变。比较结论:(1)对同一导体,导体中的电流跟它两端的电压成正比。 (2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R) (3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。2 欧姆定律:德国物理学家欧姆最先用实验研究了电流跟电压,电阻的关系,得出了如下的结论:导体的电流强度跟它两端的电压成正比,跟它的电阻成反比欧姆定律。说明(1)欧姆定律的数学表达式:I=U/R。(2)R的单位:(3)欧姆

11、定律适用于金属导体和通常壮态下的电解质溶液,对气态导体和其它一些导电原件(电子管,热敏电阻)不适用。对电路而言,它只对一段不含电源的导体成立。第三节 半导体及其应用教学目标:1、知道什么是半导体。2、了解半导体的导电特性及常见的半导体材料。3、了解半导体的应用课前准备演示用的欧姆表、热敏电阻、光敏电阻、火柴、手电筒。课时安排1课时教学过程引入新课用提问的方式复习上节课学习的知识;什么是半导体?什么是绝缘体?常见的导体有哪些?导体的电阻由哪些因素决定?导体的电阻率跟什么有关?本节课学习导体的电性能及其在集成电路、计算机技术等领域的应用。通过以上简介,激发学生的学习兴趣。进行新课金属导体的电阻率一

12、般约为10-810-6m绝缘体的电阻率一般约为1081018m半导体的电阻一般约为10-5106m 板书2、半导体的导电性能演示(1)半导体热敏电阻(或锗材料三极管3AX系列,ec极反接)与演示用欧姆表串联,此时表盘指示电阻较大。将火柴燃烧靠近热敏电阻时,欧姆表显示其阻值急剧减小。板书(1)半导体材料的电阻随温度升高而减小,称为半导体的热敏特性。演示(2)将半导体材料光敏电阻(或玻璃壳3AX81三极管外壳漆皮刮掉,使用ec极)与演示用欧姆表串联,此时表盘指示电阻较大。用手电筒照射光敏电阻时,欧姆表显示其值急剧减小。板书(2)半导体材料的电阻率随光照而减小,称为半导体的光敏特性。板书半导体材料中

13、掺入微量杂质会使它的电阻率急剧变化,称为半导体的掺杂特性。板书3、半导体导电特性的应用及发展1960年真空三极管的发明,为上世纪上半叶无线电和电话的发展奠定了基础。1947年,美国贝尔研究所的巴丁、肖克莱、不拉坦研制出第一个晶体三极管。它的出现成为上世纪下半叶世界科技发展的基础。其功耗极低,而且可靠性高,转换速度快,功能多样尺寸又小。因而成为当时出现的数字计算机的理想器件,并很快在无线电技术和军事上或得广泛的应用,由于研制晶体管,他们三人获得1956年诺贝尔物理学奖。半导体材料在目前的电子工业和微电子工业中主要用来制作晶体管、集成电路、固态激光器等器件。我们现在常见的晶体管有两种,即双极型晶体

14、管和场效应晶体管,它们都是电子计算机的关键器件,前者是计算机中央处理装置(即对数据进行操作部分)的基本单元,后者是计算机存储的基本单元。两种晶体管的性能在很大程度上均依赖于原始硅晶体的质量。砷化镓单晶体材料是继锗、硅之后发展起来的新一代半导体材料。它具有迁移率高、禁带宽度大的优势。它是目前最重要、最成熟的化合物半导体材料,主要用于光电子和微电技术领域。电子技术最初的应用领域主要是无线电通讯、广播、电视的发射和接收。雷达作为一种探测敌方飞行器的装置在第二次世界大战中大显身手,成为现代电子技术的一个重要领域。电子显微镜、各种波谱和表面能仪以及加速器、遥测、遥控和遥感、医学也是电子技术的一个重要领域。微电子技术和量子电子学是现代电子技术中最活跃的前沿领域之一。教学设计说明1、本节课的演示实验能够使学生实际体会到半导体的导电特性,并且与金属导电性能加以区别,所以要充分做好实验准备。2、介绍半导体技术的发展简史时,应尽量结合实际生活中学生比较了解的应用。例如,在计算机技术日益普及的今天,可以通过介绍计算机的只读存储器(ROM)和随机存储器(RAM),让学生了解半导体材料和技术的应用。第四节

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号