物理学原理在工程技术中的应用学习资料.doc

上传人:壹****1 文档编号:550409245 上传时间:2023-04-16 格式:DOC 页数:39 大小:294.54KB
返回 下载 相关 举报
物理学原理在工程技术中的应用学习资料.doc_第1页
第1页 / 共39页
物理学原理在工程技术中的应用学习资料.doc_第2页
第2页 / 共39页
物理学原理在工程技术中的应用学习资料.doc_第3页
第3页 / 共39页
物理学原理在工程技术中的应用学习资料.doc_第4页
第4页 / 共39页
物理学原理在工程技术中的应用学习资料.doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《物理学原理在工程技术中的应用学习资料.doc》由会员分享,可在线阅读,更多相关《物理学原理在工程技术中的应用学习资料.doc(39页珍藏版)》请在金锄头文库上搜索。

1、物理原理与工程技术内容提纲:本书以通俗的语言介绍了物理原理与工程技术的关系,介绍了力学、热学、电磁学、光学、相对论、原子物理、半导体物理、凝聚态物理等知识及其在工程技术中的应用。特别强调物理知识在现代高新技术中的应用。全书分为15章,涉及:力学原理与工程技术、流体力学与流体机械、机械波与声学技术、热能与动力、电磁理论与电磁技术、电磁波与无线电技术、半导体物理与微电子技术、传统光学技术、现代光学技术、物理效应与传感技术、真空技术及其应用、能源技术、现代测试技术、高能物理与加速器、新型功能材料。本书重要供大专院校各类学生和工程技术人员学习使用,也可作为中学生开展素质教育和一般读者了解物理知识与工程

2、技术关系的参考读物。编辑推荐:本书试图以“从自然到物理、从物理到技术、从技术到生活”为脉络,所讲述的内容既有工程应用背景又与物理学原理相配套,可以使读者拓宽视野,加深其对物理学基本原理及物理学在工程技术领域前沿作用的理解。本书从工程实际出发,避开技术细节,把实际问题抽象成物理模型,并用物理学原理进行分析,提出合理的解决方案,有助于提高读者分析和解决问题的能力;在工程技术应用的具体介绍上,把侧重点放在物理原理和它在生产、生活中的应用上,而不是放在其结构和制造工艺上,并力求做到通俗易懂。重要内容涉及:力学原理与工程技术、流体力学与流体机械、机械波与声学技术、热能与动力、电磁理论与电磁技术等。目录:

3、第一章力学原理与工程技术第一节动量守恒定律与火箭推动原理一、动量守恒定律二、火箭推动原理第二节力学原理与惯性导航一、牛顿力学的基本内容二、陀螺仪三、加速度计四、惯性导航第三节万有引力定律与人造卫星一、万有引力定律二、人造卫星三、同步卫星的发射高度和运营速度四、人造地球卫星的应用五、载人航天六、航天科技产业第四节相对论力学与相对论效应一、相对论的建立二、狭义相对论效应三、广义相对论效应和实证第二章流体力学与流体机械第一节伯努利方程及其应用一、伯努力利方程二、伯努利方程的应用第二节液压传动技术一、液压传动的发展二、液压传动的工作原理三、液压传动的特性四、液压传动的特性五、液压传动的优缺陷第三节水泵

4、、质量流量计、压力表一、水泵二、质量流量计三、压力测量仪表第四节毛细现象一、浸润与不浸润液体二、毛细现象三、毛细现象的应用第五节空气动力学与航空航天技术一、空气动力学二、空气动力学与航空航天事业第六节风洞和风洞实验技术一、风洞二、风洞实验三、风洞实验技术第三章机械波与声学技术第四章热能与动力第五章电磁理论与电磁技术第六章电磁波与无线电技术第七章半导体物理与微电子技术第八章传统光学技术第九章现代光学技术第十章物理效应与传感技术第十一章真空技术及其应用第十二章能源技术第十三章现代测试技术第十四章高能物理与加速器第十五章新型功能材料参考文献1、物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、

5、运动和转化、内部结构等方面,从而结识这些结构的组成元素及其互相作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的结识来自于实践,随着实践的扩展和进一步,物理学的内容也在不断扩展和进一步。随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这目的还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学经典力学是

6、研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们平常生活直接接触到的并一方面加以研究的都是宏观低速的机械运动。自远古以来,由于农业生产需要拟定季节,人们就进行天文观测。16世纪后期,人们对行星绕太阳的运动进行了具体、精密的观测。17世纪开普勒从这些观测结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。行星运动第一定律认为每个行星都在一个椭圆形的轨道上绕太阳运转,而太阳位于这个椭圆轨道的一个焦点上。行星运动第二定律认为

7、行星运营离太阳越近则运营就越快,行星的速度以这样的方式变化:行星与太阳之间的连线在等时间内扫过的面积相等。十年后开普勒发表了他的行星运动第三定律:行星距离太阳越远,它的运转周期越长;运转周期的平方与到太阳之间距离的立方成正比。牛顿进一步研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的具体天文观测,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观测中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标

8、和动量表达。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表白,任何一个孤立的物理系统,无论如何变化,其总能量和总动量数值是不变的。这种守恒性质的合用范围已经远远超过了经典力学的范围,现在还没有发现它们的局限性。早在19世纪,经典力学就已经成为物理学中十提成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天

9、、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题经常是综合性的问题,还需要许多学科进行综合研究,才干完全解决。 机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸取的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典记录力学热学是研究热的产生和传导,研究物质处在热状态下的

10、性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验拟定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不管能量形式如何互相转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。 在卡诺

11、研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达成各处温度都相同的状态,也就是热平衡的状态。相反的过程是不也许的,即这个孤立的、内部各处温度都相等的物体,不也许自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增长或保持不变。当熵达成最大值时,物理系统就处在热平衡状态。 进一步研究热现象的本质,就产生了记录力学。记录力学应用数学中记录分析的方法,研究大量粒子的平均行为。记录力学根据物质

12、的微观组成和互相作用,研究由大量粒子组成的宏观物体的性质和行为的记录规律,是理论物理的一个重要分支。非平衡记录力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包具有大量粒子的宏观物理系统来说,系统处在无序状态的几率超过了处在有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增长。处在平衡状态附近的非平衡系统的重要趋向是向平衡状态过渡。平衡态附近的重要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近2030年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但尚有很多问题等待解决。

13、在一定期期内,人们对客观世界的结识总是有局限性的,结识到的只是相对的真理,经典力学和以经典力学为基础的经典记录力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典记录力学也发展成为以量子力学为基础的量子记录力学。经典电磁学、经典电动力学经典电磁学是研究宏观电磁现象和客观物体的电磁性质的学科。人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不管是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很

14、相似。18世纪末发现电荷可以流动,这就是电流。但长期没有发现电和磁之间的联系。19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向互相垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表白,在电和磁之间存在着密切的联系。 在电和磁之间的联系被发现以后,人们结识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。现在人们结识到,电磁场是物质存在的一种特殊形式。电荷在其周边产生

15、电场,这个电场又以力作用于其他电荷。磁体和电流在其周边产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们结识到麦克斯韦的电磁理论对的地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。 由于电磁场可以以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。事实上,发电机无非是运用电动力学的规律,将机械能转化为电磁能:电动机无非是运用电动力学的规律将电磁能转化为机械能。电报、电话、无线电、电灯也无一不是经典电磁学和经典电动力学发展的产物。经

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 项目/工程管理

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号