专题一力学规律的综合应用(教师版).doc

上传人:M****1 文档编号:550376107 上传时间:2023-11-29 格式:DOC 页数:13 大小:1.32MB
返回 下载 相关 举报
专题一力学规律的综合应用(教师版).doc_第1页
第1页 / 共13页
专题一力学规律的综合应用(教师版).doc_第2页
第2页 / 共13页
专题一力学规律的综合应用(教师版).doc_第3页
第3页 / 共13页
专题一力学规律的综合应用(教师版).doc_第4页
第4页 / 共13页
专题一力学规律的综合应用(教师版).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《专题一力学规律的综合应用(教师版).doc》由会员分享,可在线阅读,更多相关《专题一力学规律的综合应用(教师版).doc(13页珍藏版)》请在金锄头文库上搜索。

1、 芜湖一中2007届高三(5)班物理第二轮专题复习资料 07年4月 专题一 力学规律的综合应用【考点透视】解决动力学问题有三个基本观点,即是力的观点、动量的观点、能量的观点。一、知识回顾1力的观点匀变速直线运动中常见的公式(或规律):牛顿第二定律:运动学公式:,圆周运动的主要公式:2动量观点恒力的冲量:动量:,动量的变化 动量大小与动能的关系动量定理:,对于恒力,通常研究的对象是一个物体。动量守恒定律:条件:系统不受外力或系统所受外力的合力为零;或系统所受外力的合力虽不为零,但比系统内力小得多,(如碰撞问题中的摩擦力、爆炸问题中的重力等外力比起相互作用的内力来小得多,可以忽略不计);或系统所受

2、外力的合力虽不为零,但在某个方向上的分量为零(在该方向上系统的总动量的分量保持不变)。表达式:对于两个物体有,研究的对象是一个系统(含两个或两个以上相互作用的物体)。3用能量观点解题的基本概念及主要关系恒力做功:,重力势能,动能,动能变化动能定理:力对物体所做的总功等于物体动能变化,表达式常见的功能关系重力做功等于重力势能增量的负值弹簧弹力做功等于弹性势能增量的负值有相对时,系统克服滑动摩擦力做功等于系统产生的内能,即机械能守恒:只有重力或系统内的弹力做功系统的总的机械能保持不变。表达式有、能量守恒:能量守恒定律是自然界中普遍适用的基本规律。二、力学规律的选用原则:1研究某一物体所受力的瞬时作

3、用与物体运动状态的关系时,一般用力的观点解题。2研究某一个物体受到力的持续作用而发生运动状态改变时,如果涉及时间的问题一般用动量定理,如果涉及位移问题往往用动能定理。3若研究的对象为多个物体组成的系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律去解决问题。提示:在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,由于它们作用时间都极短,故动量守恒定律一般能派上大用场,但须注意到这些过程般均隐含有系统机械能与其他形式能量之间的转化。在涉及相对位移问题时,优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也等于系统增加的内能。【例题解析】一、力的观点与动量观点结合例1

4、如图所示,长12 m,质量为50 kg的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为0.1,质量为50 kg的人立于木板左端,木板与均静止,当人以4m/s2的加速度匀加速向右奔跑至板右端时立即抱住木柱,试求:(g取10m/s2)(1)人在奔跑过程中受到的摩擦力的大小。(2)人从开始奔跑至到达木板右端所经历的时间。(3)人抱住木柱后,木板向什么方向滑动?还能滑行多远的距离?解析:人相对木板奔跑时,设人的质量为,加速度为,木板的质量为M,加速度大小为,人与木板间的摩擦力为,根据牛顿第二定律,对人有:;(2)设人从木板左端开始距到右端的时间为,对木板受力分析可知:故,方向向左;由几

5、何关系得:,代入数据得:(3)当人奔跑至右端时,人的速度,木板的速度;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:(其中为二者共同速度)代入数据得,方向与人原来运动方向一致;以后二者以为初速度向右作减速滑动,其加速度大小为,故木板滑行的距离为。点拨:用力的观点解题时,要认真分析物体受力及运动状态的变化,关键是求出加速度。二、动量观点与能量观点综合例2如图所示,坡道顶端距水平面高度为,质量为的小物块A从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时

6、,B恰位于滑道的末端O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间动摩擦因数均为,其余各处的摩擦不计,重力加速度为,求:(1)物块A在与挡板B碰撞前瞬间速度的大小。(2)弹簧最大压缩量为d时的弹性势能 (设弹簧处于原长时弹性势能为零)。解析:(1) 物块A在坡道上滑行时只有重力做功,满足机械能守恒的条件,有,故。(2) A、B在水平道上碰撞时内力远大于外力,A、B组成的系统动量守恒,有接着A、B一起压缩弹簧到最短,在此过程中A、B克服摩擦力所做的功由能量守恒定律可得,所以。点拨:有关弹簧的弹性势能,由于教材中没有给出公式,因此一般只能通过能量的转化和守恒定律

7、来计算。能量守恒是自然界普遍遵守的规律,用此观点求解的力学问题可以收到事半功倍的效果,认真分析题中事实实现了哪些能量的转化和转移,否则可能会前功尽弃。例3如图所示,在光滑的水平面上有一质量为m,长度为的小车,小车左端有一质量也是m可视为质点的物块,车子的右壁固定有一个处于锁定状态的压缩轻弹簧(弹簧长度与车长相比可忽略),物块与小车间滑动摩擦因数为,整个系统处于静止状态。现在给物块一个水平向右的初速度,物块刚好能与小车右壁的弹簧接触,此时弹簧锁定瞬间解除,当物块再回到左端时,恰与小车相对静止。求:(1)物块的初速度及解除锁定前小车相对地运动的位移。(2)求弹簧解除锁定瞬间物块和小车的速度分别为多

8、少?解析:(1)物块在小车上运动到右壁时,设小车与物块的共同速度为,由动量守恒定律得,由能量关系有,故,在物块相对小车向右运动的过程中,小车向右作匀加速运动加速度为,速度由0增加到,小车位移为,则;(2)弹簧解除锁定的瞬间,设小车的速度为,物块速度为,最终速度与小车静止时,共同速度为,由动量守恒定律得,由能量关系有,联立四式解得: 和(舍去),所以,。点拨:弹簧锁定意味着储存弹性势能能量,解出锁定意味着释放弹性势能能量。求解物理问题,有时需要根据结果和物理事实,作出正确判断,确定取舍。例4一辆质量为2 kg的平板车,左端放有质量M3 kg的小滑块,滑块与平板车之间的动摩擦因数0.4,如图所示,

9、开始时平板车和滑块共同以2 m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短,且碰撞后平板车速度大小保持不变,但方向与原来相反。设平板车足够长,以至滑块不会滑到平板车右端(取g1.0 m/s2),求:(1)平板车第次与墙壁碰撞后向左运动的最大距离。(2)平板车第二次与墙壁碰撞前瞬间的速度。(3)为使滑块始终不会滑到平板车右端,平板车至少多长?解析:(1) 平板车第次与墙壁碰撞后因受滑块对它的摩擦力作用而向左作匀减速直线运动。设向左运动的最大距离为,由动能定理得所以有;(2)假设平板车第二次与墙壁碰撞前和物块已经达到共同速度,由于系统动量守恒,有,即设平板车从第次与墙壁碰

10、撞后向左运动的最大距离处到再加速到速度所发生的位移大小为,由动能定理得有,显然,表明平板车第二次与墙壁碰撞前已经达到了共同速度,这一速度也是平板车第二次与墙壁碰撞前瞬间的速度;(3)平板车与墙壁多次碰撞,使与之间发生相对滑动。由于摩擦生热,系统的动能逐渐减少,直到最终停止在墙角边,设整个过程中物块与平板车的相对位移为,由能量转化和守恒定律得,所以;点拨:用数学知识求解物理问题是考生应当具有的一项能力。在求解一些物理问题时往往要用到有关的数学知识,如:数列求和、不等式求解、极值讨论等等,正确求解这类问题必须以较好的数学知识为前提。CABv02 v 0例5如图所示,C是放在光滑水平面上的一块木板,

11、木板质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为。最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长, A、B始终未滑离木板。求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。解析:(1)木块A先做匀减速直线运动至与C速度相同,后与一道做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等(设为v1)为止, A、B、C三者组成的系统动量守恒故:,v1=0.6v0;对木块B运用动能定理,有,所以

12、。(2)设木块A在整个过程中的最小速度为v(此时A、C共速),由动量定理知,至此,A、B的动量变化都相同,都为,因A、B、C组成的系统动量守恒,有,所以木块A在整个过程中的最小速度。点拨:对于多物体系统只要认真分析每一个物体受力情况和运动情况,抓住相关联的运动状态,问题仍然很容易解决。三、三种观点综合应用例6对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动。当它们之间的距离大于等于某一定值d时,相互作用力为零,当它们之间的距离小于d时,存在大小恒为F的斥力。设A物体质量m1l.0kg,开始时静止在直线上某点;B

13、物体质量m23.0 kg,以速度从远处沿直线向A运动,如图所示。若d0.10 m,F0.60 N,0.20m/s,求:(1)相互作用过程中A、B加速度的大小;(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量;(3) A、B间的最小距离。解析:(1)由牛顿运动定律可知,相互作用过程中A、B加速度的大小分别为,;(2)A、B间距离最小时,两者速度相同,全过程满足由动量守恒的条件,故有,所以系统(物体组)动能的减少量为;(3)根据匀变速直线运动规律得,而距离最小时有v1=v2 ,由匀变速直线运动规律可得两物体位移分别为,由几何关系可知,解以上各式得A、B间的最小距离。点拨:理论

14、联系实际,用物理知识综合解决所遇问题是高考的一种追求。在处理有关问题时,为了方便需要忽略问题中的次要因素,突出主要因素,作恰当的简化,建立与所学知识间的联系,最终达到解决问题的目的。本题对实际问题的处理有较好的示范作用。例7如题右图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、m(为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求:(1)待定系数。(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力。(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速

15、度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。解析:(1)由机械能守恒定律得 故;(2)设A、B第一次碰撞后的速度大小分别为、,则,故,向左;向右;设轨道对B球的支持力为,B球对轨道的压力为,由牛顿第三定律知,方向竖直向下。(3) 由机械能守恒定律知,第一次碰撞前A的速度为。设A、B球第二次碰撞刚结束时的速度分别为、,则解得, (另一组解:,不合题意,舍去)。由此可得:当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同。点拨:对物理问题进行逻辑推理得出正确结论和作出正确判断,并把推导过程正确地表达出来,体现了对推理能力的考查,希望考生注意这方面的训练。【专题一专题训练与高考预测】1如右图,质量为3kg的木板放在光滑水平面上,质量为1kg的物块在木板上,它们之间有摩擦,木板足够长,两者都以4m/s的初速度向相反方向运动,当木板的速度为2.4m/s时,物块(

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号