内江风电零部件项目可行性研究报告【参考范文】

上传人:鲁** 文档编号:549281840 上传时间:2024-02-09 格式:DOCX 页数:124 大小:120.75KB
返回 下载 相关 举报
内江风电零部件项目可行性研究报告【参考范文】_第1页
第1页 / 共124页
内江风电零部件项目可行性研究报告【参考范文】_第2页
第2页 / 共124页
内江风电零部件项目可行性研究报告【参考范文】_第3页
第3页 / 共124页
内江风电零部件项目可行性研究报告【参考范文】_第4页
第4页 / 共124页
内江风电零部件项目可行性研究报告【参考范文】_第5页
第5页 / 共124页
点击查看更多>>
资源描述

《内江风电零部件项目可行性研究报告【参考范文】》由会员分享,可在线阅读,更多相关《内江风电零部件项目可行性研究报告【参考范文】(124页珍藏版)》请在金锄头文库上搜索。

1、泓域咨询/内江风电零部件项目可行性研究报告报告说明热塑性树脂:基于废旧叶片环保回收利用规划,可降解的热塑性树脂或将是未来叶片新材料发展方向。风电叶片基体材料多采用热固性树脂,如环氧树脂、不饱和聚酯树脂等,热固性树脂制成的风电叶片在其退役后材料很难被回收利用,与热固性复合材料相比,热塑性复合材料在满足密度小、强度高、抗冲击性好的前提下,兼具可循环使用、废料可回收、产品可熔融再加工、可焊接等优点。根据谨慎财务估算,项目总投资18564.32万元,其中:建设投资14939.69万元,占项目总投资的80.48%;建设期利息294.55万元,占项目总投资的1.59%;流动资金3330.08万元,占项目总

2、投资的17.94%。项目正常运营每年营业收入40500.00万元,综合总成本费用31283.44万元,净利润6749.86万元,财务内部收益率27.63%,财务净现值13774.33万元,全部投资回收期5.32年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。本项目生产所需的原辅材料来源广泛,产品市场需求旺盛,潜力巨大;本项目产品生产技术先进,产品质量、成本具有较强的竞争力,三废排放少,能够达到国家排放标准;本项目场地及周边环境经考察适合本项目建设;项目产品畅销,经济效益好,抗风险能力强,社会效益显著,符合国家的产业政策。本报告为模板参考范文,不作为投资建议,仅供参考。报告

3、产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。目录第一章 市场预测8一、 疫情影响逐渐驱散,原材料价格压力趋缓8二、 碳纤维价格明显高于玻纤,需求有望保持较快增长10第二章 项目背景及必要性14一、 叶片是风电最基础的关键零部件之一,是影响风力发电效率的关键因素之一14二、 拉挤成型工艺可以减少工序,相应减少模具的投入15三、 风电主机成本结构中,叶片、齿轮箱、发电机是成本占比最高的三种零部件18四、 加快建设成渝重大科技成果转化中心19五、 加快建设成渝发展主轴重要节点城市21六、 项

4、目实施的必要性23第三章 项目总论25一、 项目概述25二、 项目提出的理由27三、 项目总投资及资金构成29四、 资金筹措方案29五、 项目预期经济效益规划目标29六、 项目建设进度规划30七、 环境影响30八、 报告编制依据和原则30九、 研究范围32十、 研究结论32十一、 主要经济指标一览表32主要经济指标一览表32第四章 选址方案35一、 项目选址原则35二、 建设区基本情况35三、 确保“十四五”规划建议的目标任务落到实处38四、 项目选址综合评价39第五章 建设内容与产品方案40一、 建设规模及主要建设内容40二、 产品规划方案及生产纲领40产品规划方案一览表40第六章 运营管理

5、42一、 公司经营宗旨42二、 公司的目标、主要职责42三、 各部门职责及权限43四、 财务会计制度47第七章 SWOT分析54一、 优势分析(S)54二、 劣势分析(W)55三、 机会分析(O)56四、 威胁分析(T)56第八章 发展规划62一、 公司发展规划62二、 保障措施63第九章 工艺技术方案66一、 企业技术研发分析66二、 项目技术工艺分析69三、 质量管理70四、 设备选型方案71主要设备购置一览表72第十章 劳动安全73一、 编制依据73二、 防范措施74三、 预期效果评价80第十一章 节能可行性分析81一、 项目节能概述81二、 能源消费种类和数量分析82能耗分析一览表83

6、三、 项目节能措施83四、 节能综合评价85第十二章 项目投资分析86一、 投资估算的依据和说明86二、 建设投资估算87建设投资估算表89三、 建设期利息89建设期利息估算表89四、 流动资金90流动资金估算表91五、 总投资92总投资及构成一览表92六、 资金筹措与投资计划93项目投资计划与资金筹措一览表93第十三章 项目经济效益95一、 经济评价财务测算95营业收入、税金及附加和增值税估算表95综合总成本费用估算表96固定资产折旧费估算表97无形资产和其他资产摊销估算表98利润及利润分配表99二、 项目盈利能力分析100项目投资现金流量表102三、 偿债能力分析103借款还本付息计划表1

7、04第十四章 风险风险及应对措施106一、 项目风险分析106二、 项目风险对策108第十五章 总结分析110第十六章 附表附录112主要经济指标一览表112建设投资估算表113建设期利息估算表114固定资产投资估算表115流动资金估算表115总投资及构成一览表116项目投资计划与资金筹措一览表117营业收入、税金及附加和增值税估算表118综合总成本费用估算表119利润及利润分配表120项目投资现金流量表121借款还本付息计划表122第一章 市场预测一、 疫情影响逐渐驱散,原材料价格压力趋缓020年受疫情及供需影响,环氧树脂价格从原先1.6万-1.8万元/吨持续走高,2021年4月攀升至4万元

8、/吨,疫情趋缓后价格逐渐回落至1.8万元/吨,在此过程中,叶片企业加快聚氨酯树脂替代;夹芯材料方面,巴沙木是理想的夹芯材料材,但作为天然材料且产地较为局限,生产供应产业链长,任何环节出问题都会影响供应。20192020年,同受风电“抢装”以及新冠肺炎疫情爆发的影响,巴沙木供应紧张,价格在2020年曾突破2万元/立方米,PET逐渐作为重要芯材替代巴沙木。风电叶片上游主要可选原材料较多,通过各种材料之间的替代关系一定程度上缓解了通胀压力。为促进风电产业由政策驱动发展转为市场驱动,风电电价经历了标杆电价阶段、竞价阶段、指导电价阶段及目前的平价上网阶段。自2020年陆风国家退补以来,我国陆上风电逐步进

9、入了平价阶段,海上风电平价也于2021年1月1日开启。随着风力发电平均上网电价和)*bEffi,或将倒逼风电整机厂商及上游零部件公司降本来维持利润空间。成本降低的最有效手段即不断扩大风电机组的单机容量,因此,平价时代机组大型化和零部件大尺寸化是未来风电发展的趋势。我国风机大型化趋势加速,风机平均风轮直径同步增长。风机大型化方面,2011-2021年陆风新增装机平均单机容量CAGR达7.53%,2021年新增平均单机容量为3.1MW,具有明显加速趋势;2011-2021年海风新增装机平均单机容量CAGR为7.57%,2021年新增平均单机容量为5.6MW。同时,金风科技作为风电产品的龙头企业,风

10、电产品销售大型化趋势明显加快。据金风科技一季度业绩报告,公司3/4S及以上销售占比自2018年起逐年增加,至2021年占比达60.76%,2022年一季度3/4S产品销售占比为55.2%,同比提升145.2%。风机叶片方面,据中国可再生能源学会风能专业委员会(CWEA)统计,2010年,我国新增风电机组的平均风轮直径为78米,2020年达到136米。20102015年,我国新增风电机组平均风轮直径年均增长4.5米,20162020年则年均增长7.8米。目前,我国最长陆上风电叶片达到91米,相当于30层楼的高度;最长海上风电叶片为103米,接近于4个标准篮球场的长度。在风机大型化趋势下,叶片的大

11、型化是增强风电机组捕风能力以及降低风电项目成本的主要途径之一。根据理论发电量计算公式,风电机组产生的电能与叶片长度的平方成正比,增加叶片长度可以带来较为可观的发电量提升。而大容量机组搭配长叶片,能够减少同等装机规模项目所用的机组数量,相应降低机组及其施工安装等方面的投入。二、 碳纤维价格明显高于玻纤,需求有望保持较快增长碳纤维织物的价格较高,是玻璃纤维的10倍以上,风电用大丝束碳纤维成本为12万元/吨(约1.8万美元/吨,其他可参考数据区间在1.4-1.8万美元/吨),制成织物成本则需18万元/吨,是玻纤织物价格的12倍。当前碳纤维主要用于叶片主梁,即替换原先主梁中的单轴向玻纤布(单轴向玻纤布

12、占叶片成本14%),替换后可有效减重20%,但成本上升82%。全球风电用碳纤维需求量有望保持较快增长。国内主流的碳纤维供应商在十四五期间开始提高碳纤维产能和批量化生产供应,并通过提升技术、改进设备和减少能耗来降低成本。从2020年开始,碳纤维产能大幅上升,且2021年较2020年在数量和增幅方面,有较大提升,2020年碳纤维产能从2019年的2.69万吨提升至3.62万吨,2021年产能增至6.34万吨,增幅高达75.14%。当前叶片上应用的碳纤维多选择48-50k的大丝束。随着海上风电市场的不断扩大,碳纤维的应用占比有望提升。对于海上大叶片来说,通常会在其承载的关键部位主梁上应用碳纤维以提高

13、叶片刚度和强度,以减少传递到主机和塔底的载荷,进而优化整机系统造价来降低度电成本。应用碳纤主梁设计的叶片一般比全玻纤叶片减重20%-30%,虽然碳纤叶片成本上升,但其带来的传动链上相关部件以及塔筒的优化减重,使得风电机组的整体成本降低10%以上。碳纤维成本:叶片材料、结构设计与生产工艺相互配合,使得碳纤维实现低成本应用,同时受益碳纤维国产化推进,碳纤维价格和风电应用成本有望降低。2015年以前用于风电领域的碳纤维主要采用预浸料或织物的真空导入工艺,部分采用小丝束碳纤维,成本较高,近年来主要采用大丝束碳纤维拉挤梁片,成本有效降低,根源在于VESTAS在大梁结构的革命性创新设计才使拉挤梁片的工艺成

14、为可能。这种设计理念把整体化成型的主梁主体受力部分拆分为高效低成本高质量的拉挤梁片标准件,然后把这些标准件一次组装整体成型,其优点为1)通过拉挤工艺生产方式大大提高了纤维体积含量,降低了主体承载部分的重量;2)通过标准件的生产方式大大提高了生产效率,保证产品性能的一致性和稳定性;3)大大降低了运输成本和最后组装整体成型的生产成本;4)预浸料和织物都有一定的边角废料,拉挤梁片及整体灌注极少。按这种设计和工艺制造的碳纤维主梁,兆瓦级的叶片均可使用。另外,国产碳纤维技术持续突破,有望提高风电领域的产业化应用比例,带动风电用碳纤维成本降低。目前叶片制造工艺中,实现纤维增强复合材料嵌入过程的工艺包括湿法

15、手糊成型、预浸料成型、真空导成型,但在风机市场扩大及风机大型化趋势下,湿法手糊成型、预浸料成型因环境污染、成本等问题较不适于大型叶片,目前主流工艺为真空灌注导入。碳纤维应用于叶片的设计和工艺壁垒:目前风电叶片的碳纤维用量中VESTAS占较大比重,主要是由于技术专利保护,2002年7月19日,VESTAS分别向中国、丹麦等国家知识产权局、欧洲专利局、世界知识产权局等国际性知识产权局申请了以碳纤维条带为主要材料的风力涡轮叶片的相关专利,专利权利要求包含了制造预先预制的条带的方法和制造风力涡轮机叶片的方法。专利保护期为20年。专利保护期期间,国内叶片制造商只能通过自主研发主梁设计结构和生产工艺规避VESTAS的专利保护,一定程度上限制了碳纤维材料在国产风电叶片上的应用,随着VESTAS专利到期,国内碳纤维风电叶片产业化应用有望加快。风电叶片主梁所用碳纤维存在大克重预浸料、碳纤维织物真空导入、拉挤成型3种工艺,2015年之前全球碳纤维工艺以预浸料和真空灌注为主,而碳纤维价格高使风电

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号