拉普拉斯方程new

上传人:工**** 文档编号:549150165 上传时间:2023-07-12 格式:DOC 页数:6 大小:71.50KB
返回 下载 相关 举报
拉普拉斯方程new_第1页
第1页 / 共6页
拉普拉斯方程new_第2页
第2页 / 共6页
拉普拉斯方程new_第3页
第3页 / 共6页
拉普拉斯方程new_第4页
第4页 / 共6页
拉普拉斯方程new_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《拉普拉斯方程new》由会员分享,可在线阅读,更多相关《拉普拉斯方程new(6页珍藏版)》请在金锄头文库上搜索。

1、拉普拉斯方程求助编辑百科名片 拉普拉斯方程拉普拉斯方程(Laplacesequation),又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 目录拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解二维拉普拉斯方程 解析函数 三维情况下二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用三维拉普拉斯方程 基本解 格林

2、函数 在流场中的应用拉普拉斯人物介绍展开拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解二维拉普拉斯方程 解析函数 三维情况下二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用三维拉普拉斯方程 基本解 格林函数 在流场中的应用拉普拉斯人物介绍展开编辑本段拉普拉斯方程(Laplace equation)拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲

3、线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差P= P1- P2,其数值与液面曲率大小有关,可表示为:p=(1/R1+1/R2)式中是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中拉普拉斯方程为:u=d2u/dx2+d2u/dy2=0,其中 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数 : 其中

4、称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。 拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或 (可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作 Laplacian。 狄利克雷问题拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个

5、温度分布场就是相应的狄利克雷问题的解。 诺伊曼边界条件拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数本身,而是沿D的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。 拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 编辑本段二维拉普拉斯方程两个自变量的拉普拉斯

6、方程具有以下形式: 函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数 + h(x,y)对y的二阶偏导数 = 0 解析函数解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z= x+ iy,并且 那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f(z) = u(x,y) + iv(x ,y) u 对x的偏导数 = v 对y 的偏导数 , u 对y 的偏导数 = - (v 对 x 的偏导数) 上述方程继续 求导就得到 所以u满足拉普拉斯方程。类似的计算可推得v同样满足拉普拉斯方程。 反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,

7、若写成下列形式: 则等式 成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定,只能得到它的微增量表达式: 满足拉普拉斯方程意味着满足可积条件: 所以可以通过一个线积分来定义。可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。于是,我们便通过复变函数方法得到了和这一对拉普拉斯方程的解。这样的解称为一对共轭调和函数。这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有f(z)的奇点。譬如,在极坐标平面(r,)上定义函数 那么相应的解析函数为 在这里需要注意的是,极角仅在不包含原点的区域内才是单值的。 拉普拉斯

8、方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。 幂级数和傅里叶级数之间存在着密切的关系。如果我们将函数f在复平面上以原点为中心,R为半径的圆域内展开成幂级数,即 将每一项系数适当地分离出实部和虚部 那么 这便是f的傅里叶级数。 三维情况下拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数 : 上面的方程常常简写作: 或 其中div表示矢量场的散度(结果是一个标量场),grad表示标量

9、场的梯度(结果是一个矢量场),或者简写作: 其中称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。 拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作 Laplacian。 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域

10、内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。 拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数本身,而是沿D的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。 拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 编辑本段二维拉普拉斯方程

11、两个自变量的拉普拉斯方程具有以下形式: 解析函数解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z= x+ iy,并且 那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程: 上述方程继续求导就得到 所以u满足拉普拉斯方程。类似的计算可推得v同样满足拉普拉斯方程。 反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,若写成下列形式: 则等式 成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定,只能得到它的微增量表达式: 满足拉普拉斯方程意味着满足可积条件: 所以可以通过一个线积分来定义。可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具

12、体路径无关,仅由起点和终点决定。于是,我们便通过复变函数方法得到了和这一对拉普拉斯方程的解。这样的解称为一对共轭调和函数。这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有f(z)的奇点。譬如,在极坐标平面(r,)上定义函数 那么相应的解析函数为 在这里需要注意的是,极角仅在不包含原点的区域内才是单值的。 拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。 幂级数

13、和傅里叶级数之间存在着密切的关系。如果我们将函数f在复平面上以原点为中心,R为半径的圆域内展开成幂级数,即 将每一项系数适当地分离出实部和虚部 那么 这便是f的傅里叶级数。 在流场中的应用设u、v分别为满足定常、不可压缩和无旋条件的流体速度场的x和y方向分量(这里仅考虑二维流场),那么不可压缩条件为: 无旋条件为: 若定义一个标量函数,使其微分满足: 那么不可压缩条件便是上述微分式的可积条件。积分的结果函数称为流函数,因为它在同一条流线上各点的值是相同的。的一阶偏导为: 无旋条件即令 满足拉普拉斯方程。的共轭调和函数称为速度势。 柯西-黎曼方程要求 所以每一个解析函数都对应着平面内的一个定常不

14、可压缩无旋流场。解析函数的实部为速度势函数,虚部为流函数。 在电磁学中的应用根据麦克斯韦方程组,二维空间中不随时间变化的电场(u,v)满足: 和 其中为电荷密度。第一个麦克斯韦方程便是下列微分式的可积条件: 所以可以构造电势函数使其满足 第二个麦克斯韦方程即: 这是一个泊松方程。 编辑本段三维拉普拉斯方程基本解拉普拉斯方程的基本解满足 其中的三维函数代表位于的一个点源。 由基本解的定义,若对u作用拉普拉斯算子,再把结果在包含点源的任意体积内积分,那么 由于坐标轴旋转不改变拉普拉斯方程的形式,所以基本解必然包含在那些仅与到点源距离r相关的解中。如果我们选取包含点源、半径为a的球形域作为积分域,那

15、么根据高斯散度定理 求得在以点源为中心,半径为r的球面上有 所以 经过类似的推导同样可求得二维形式的解 格林函数格林函数是一种不但满足前述基本解的定义,而且在体积域V的边界S上还满足一定的边界条件的基本解。譬如,可以满足 现设u为在V内满足泊松方程的任意解: 且u在边界S上取值为g,那么我们可以应用格林公式(是高斯散度定理的一个推论),得到 un和Gn分别代表两个函数在边界S上的法向导数。考虑到u和G满足的条件,可将上式化简为 所以格林函数描述了量f和g对(x,y,z)点函数值的影响。格林函数在半径为a的球面内的点上得值可以通过镜像法求得(Sommerfeld, 1949):距球心的源点P的通过

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号