高中物理 奥林匹克物理竞赛解题方法

上传人:桔**** 文档编号:548916055 上传时间:2022-11-20 格式:DOC 页数:14 大小:1.59MB
返回 下载 相关 举报
高中物理 奥林匹克物理竞赛解题方法_第1页
第1页 / 共14页
高中物理 奥林匹克物理竞赛解题方法_第2页
第2页 / 共14页
高中物理 奥林匹克物理竞赛解题方法_第3页
第3页 / 共14页
高中物理 奥林匹克物理竞赛解题方法_第4页
第4页 / 共14页
高中物理 奥林匹克物理竞赛解题方法_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《高中物理 奥林匹克物理竞赛解题方法》由会员分享,可在线阅读,更多相关《高中物理 奥林匹克物理竞赛解题方法(14页珍藏版)》请在金锄头文库上搜索。

1、高中奥林匹克物理竞赛解题方法五、极限法方法简介极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。赛题精讲例1:如图51所示, 一个质量为m的小球位于一质量可忽略的直立弹簧上方h高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k,则物块可能获得的最大动能为 。解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理

2、,小球所受合力为零的位置速度、动能最大。所以速最大时有mg=kx 图51由机械能守恒有 联立式解得 例2:如图52所示,倾角为的斜面上方有一点O,在O点放一至斜面的光滑直轨道,要求一质点从O点沿直轨道到达斜面P点图52的时间最短。求该直轨道与竖直方向的夹角。解析:质点沿OP做匀加速直线运动,运动的时间t应该与角有关,求时间t对于角的函数的极值即可。由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 该质点沿轨道由静止滑到斜面所用的时间为t,则 所以 由图可知,在OPC中有 所以 将式代入式得 显然,当时,上式有最小值.所以当时,质点沿直轨道滑到斜面所用的时间最短。此题也可以用作图法求解。例3:从

3、底角为的斜面顶端,以初速度水平抛出一小球,不计图53空气阻力,若斜面足够长,如图53所示,则小球抛出后,离开斜面的最大距离H为多少?解析:当物体的速度方向与斜面平行时,物体离斜面最远。以水平向右为x轴正方向,竖直向下为y轴正方向,则由:,解得运动时间为该点的坐标为 由几何关系得:解得小球离开斜面的最大距离为 。这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。例4:如图54所示,一水枪需将水射到离喷口的水平距离为3.0m的墙外, 从喷口算起, 墙高为4.0m。 若不计空气阻力,取图54,求所需的最小初速及对应的发射仰角。解析:水流做斜上抛运动,以喷口O为原点建立如图所示的直角坐标

4、,本题的任务就是水流能通过点A(d、h)的最小初速度和发射仰角。根据平抛运动的规律,水流的运动方程为 把A点坐标(d、h)代入以上两式,消去t,得:令 上式可变为且最小初速=例5:如图55所示,一质量为m的人,从长为l、质量为M的铁板的一端匀加速跑向另一端,并在另一端骤然停止。铁板和水平面间摩擦因数为,人和铁板间摩擦因数为图55,且。这样,人能使铁板朝其跑动方向移动的最大距离L是多少?解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对载人铁板的阻力是地面对铁板的摩擦力f,其加速度。由于铁板移动的距离越大,L越大。是人与铁板一起开始地运动的速度,因此人应以不会引起铁板运

5、动的最大加速度奔跑。 人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦,根据系统的牛顿第二定律得: 所以 哈设、分别是人奔跑结束及人和铁板一起运动时的速度因为 且并将、代入式解得铁板移动的最大距离 例6:设地球的质量为M,人造卫星的质量为m,地球的半径为R0,人造卫星环绕地球做圆周运动的半径为r。试证明:从地面上将卫星发射至运行轨道,发射速度 ,并用该式求出这个发射速度的最小值和最大值。(取R0=6.4106m),设大气层对卫星的阻力忽略不计,地面的重力加速度为g)解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量。设卫星从地面发射的速度

6、为,卫星发射时具有的机械能为 进入轨道后卫星的机械能为 由E1=E2,并代入解得发射速度为 又因为在地面上万有引力等于重力,即:把式代入式即得:(1)如果r=R0,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小为.(2)如果,所需发射速度最大(称为第二宇宙速度或脱离速度)为 例7:如图56所示,半径为R的匀质半球体,其重心在球心O点正下方C点处,OC=3R/8, 半球重为G,半球放在水平面上,在半球的平面上放一重为G/8的物体,它与半球平在间的动摩擦因数, 求无滑动时物体离球心 图56O点最大距离是多少?解析:物体离O点放得越远,根据力矩的平衡,半球体转过的角度越大,但物体在球体斜面上

7、保持相对静止时,有限度。 设物体距球心为x时恰好无滑动,对整体以半球体和地面接触点为轴,根据平衡条件有:得 可见,x随增大而增大。临界情况对应物体所受摩擦力为最大静摩擦力,则: .例8:有一质量为m=50kg的直杆,竖立在水平地面上,杆与地面间静摩擦因数,杆的上端固定在地面上的绳索拉住,绳图57与杆的夹角,如图57所示。(1)若以水平力F作用在杆上,作用点到地面的距离为杆长),要使杆不滑倒,力F最大不能越过多少?(2)若将作用点移到处时,情况又如何?解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h有关,讨论力与h的关系是关键。杆的受力如图57甲所示,由平衡条件

8、得图57甲 另由上式可知,F增大时,f相应也增大,故当f增大到最大静摩擦力时,杆刚要滑倒,此时满足:解得:由上式又可知,当时对F就没有限制了。(1)当,将有关数据代入的表达式得 (2)当无论F为何值,都不可能使杆滑倒,这种现象即称为自锁。例9:放在光滑水平面上的木板质量为M,如图58所示,板上有质量为m的小狗以与木板成角的初速度(相对于地面)由A点跳到B点,已知AB间距离为s。求初速度的最小值。 图58解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左运动。小狗落到板上的B点时,小狗和木板对地位移的大小之和,是小狗对木板的水平位移。由于水平方向动量守恒,有 小狗在空中

9、做斜抛运动的时间为 又 将、代入式得 当有最小值,。例10:一小物块以速度沿光滑地面滑行,然后沿光滑曲面上升到顶部水平的高台上,并由高台上飞出,如图59图59所示, 当高台的高度h多大时,小物块飞行的水平距离s最大?这个距离是多少?(g取10m/s2)解析:依题意,小物块经历两个过程。在脱离曲面顶部之前,小物块受重力和支持力,由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s是高度h的函数。设小物块刚脱离曲面顶部的速度为,根据机械能守恒定律, 小物块做平抛运动的水平距离s和高度h分别为: 以上三式联立解得:当时,飞行距离最大,为。例11:军训中,战士距墙s,以速度

10、起跳,如图510所示,再用脚蹬墙面一次,使身体变为竖直向上的运动以继续升高,墙面与鞋底之间的静摩擦因数为。求能使人体重心有最大总升高的起跳角。 图510解析:人体重心最大总升高分为两部分,一部分是人做斜上抛运动上升的高度,另一部分是人蹬墙所能上升的高度。如图510甲,人做斜抛运动,图510甲 重心升高为 脚蹬墙面,利用最大静摩擦力的冲量可使人向上的动量增加,即 ,所以人蹬墙后,其重心在竖直方向向上的速度为,继续升高,人的重心总升高H=H1+H2=时,重心升高最大。例12:如图511所示,一质量为M的平顶小车,以速度沿水平的光滑轨道做匀速直线运动。现将一质量为m的小物块无图511初速地放置在车顶

11、前缘。已知物块和车顶之间的滑动摩擦因数为。(1)若要求物块不会从车顶后缘掉下,则该车顶最少要多长?(2)若车顶长度符合(1)问中的要求,整个过程中摩擦力共做多少功?解析:当两物体具有共同速度时,相对位移最大,这个相对位移的大小即为车顶的最小长度。设车长至少为l,则根据动量守恒 根据功能关系 解得 ,摩擦力共做功 例13:一质量m=200kg,高2.00m的薄底大金属桶倒扣在宽广的 水池底部,如图512所示。桶的内横截面积S=0.500m2,桶壁加桶底的体积为V0=2.50102m3。桶内封有高度为图512l=0.200m的空气。池深H0=20.0m,大气压强p0=10.00m水柱高,水的密度,

12、重力加速度取g=10.00m/s2。若用图中所示吊绳将桶上提,使桶底到达水面处,求绳子拉力对桶所需何等的最小功为多少焦耳?(结果要保留三位有效数字)。不计水的阻力,设水温很低,不计其饱和蒸汽压的影响。并设水温上下均匀且保持不变。解析:当桶沉到池底时,桶自身重力大于浮力。在绳子的作用下 桶被缓慢提高过程中,桶内气体体积逐步增加,排开水的体积也逐步增加,桶受到的浮力也逐渐增加,绳子的拉力逐渐减小,当桶受到的浮力等于重力时,即绳子拉力恰好减为零时,桶将处于不稳定平衡的状态,因为若有一扰动使桶略有上升,则浮力大于重力,无需绳的拉力,桶就会 图512甲自动浮起,而不需再拉绳。因此绳对桶的拉力所需做的最小

13、功等于将桶从池底缓慢地提高到浮力等于重力的位置时绳子拉桶所做的功。 设浮力等于重力的不稳定平衡位置到池底的距离为H,桶内气体的厚度为,如图512甲所示。因为总的浮力等于桶的重力mg,因而有 有=0.350m 在桶由池底上升高度H到达不稳定平衡位置的过程中,桶内气体做等温变化,由玻意耳定律得 由、两式可得 H=12.240m 由式可知H(H0),所以桶由池底到达不稳定平衡位置时,整个桶仍浸在水中。 由上分析可知,绳子的拉力在整个过程中是一个变力。对于变力做功,可以通过分析水和桶组成的系统的能量变化的关系来求解:先求出桶内池底缓慢地提高了H高度后的总机械能量EE由三部分组成:(1)桶的重力势能增量 (2)由于桶本身体积在不同高度处排开水的势能不同所产生的机械能的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > IT计算机/网络 > Flash/Flex

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号