外文翻译--干燥技术.doc

上传人:博****1 文档编号:548857976 上传时间:2022-09-06 格式:DOC 页数:7 大小:44.50KB
返回 下载 相关 举报
外文翻译--干燥技术.doc_第1页
第1页 / 共7页
外文翻译--干燥技术.doc_第2页
第2页 / 共7页
外文翻译--干燥技术.doc_第3页
第3页 / 共7页
外文翻译--干燥技术.doc_第4页
第4页 / 共7页
外文翻译--干燥技术.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《外文翻译--干燥技术.doc》由会员分享,可在线阅读,更多相关《外文翻译--干燥技术.doc(7页珍藏版)》请在金锄头文库上搜索。

1、英文原文Drying TechnologyThere are three main types of gas-suspension dryers: Spray dryers, to convert a liquid solution or suspension to a dry, free-flowing powder Fluid-bed dryers, used to dry wet filter cake, or for pastes and sludges with dry product recirculation Flash dryers, for a relatively dry,

2、 crumbly, non-sticky feed The type of dryer chosen for any given application depends on both the feed properties and product requirements. Important feed properties are the moisture content, solids, viscosity, and density, as well as any volatile, flammable, or toxic components. Dried product specif

3、ications may include average particle size and particle size distribution, density, moisture content, and residual volatiles or solvents. Powder characteristics can be controlled and powder properties maintained constant through continuous operation.Spray DryingSpray drying is a three-step drying pr

4、ocess involving both particle formation and drying. (1) The process begins with the atomization of a liquid feed into a spray of fine droplets. (2) Then a heated gas stream suspends the droplets, evaporating the liquid and leaving the solids in essentially their original size and shape. (3) Finally,

5、 the dried powder is separated from the gas stream and collected. Spent drying gas is either treated and exhausted to the atmosphere or recirculated to the system. These three steps are accomplished by three components: the atomizer, the disperser, and the drying chamber.The selection and operation

6、of the atomizer is of extreme importance in achieving an optimum operation and production of top-quality powders. There are four main types of atomization: Centrifugal atomization, the most common, uses a rotating wheel or disc to break the liquid stream into droplets. The rotational speed determine

7、s the mean particle size, while the particle size distribution about the mean remains fairly constant in a system. Centrifugal atomizers are available in a large variety of sizes, from laboratory scale to very large commercial units. Hydraulic pressure-nozzle atomization forces pressurized fluid thr

8、ough an orifice. Multiple nozzles are used to increase capacity. The particle size depends on the pressure drop across the orifice, so that the orifice size determines the capacity of the system. This type of atomization is simpler than centrifugal, but cannot be controlled as well. It is not suitab

9、le for abrasive materials, or materials that tend to plug the orifices. Two-fluid pneumatic atomization uses nozzles, as well, but introduces a second fluid, usually compressed air, into the liquid stream to atomize it. This type of atomization has the advantage of relatively low pressures and veloc

10、ities and a shorter required drying path. It is most often used in small-scale equipment, laboratory or pilot size. Sonic atomization, not yet widely used, passes a liquid over a surface vibrated at ultrasonic frequencies. It can produce very fine droplets at low flow rates. Current limitations are

11、capacity and the range of different product that can be atomized. After atomization, a disperser brings the heated gas into contact with the droplets. The disperser must accomplish three things: mix the gas with the droplets, begin the drying process, and determine the flow paths through the drying

12、chamber. The drying gas may be heated directly by combustion of natural gas, propane, or fuel oil, or indirectly using shell-and-tube or finned heat exchangers. Electric heaters may be used in small dryers. Industrial radial fans move the heated gas through the system.The drying chamber must be size

13、d to allow adequate contact time for evaporation of all of the liquid to produce a dry powder product. Factors that impact the drying time include the temperature difference between the droplets and the drying gas, and their flow rates. The exact shape of the chamber depends on the drying characteri

14、stics and product specifications, but most are cylindrical with a cone-shaped lower section to facilitate collection of the product.Finally, proper configuration of the atomizer, disperser, and drying chamber is essential for complete drying and to avoid the deposit of wet material on the interior s

15、urfaces of the dryer. Designs may use co-current, counter-current, or mixed flow patterns.The powder is separated from the drying gas at the bottom of the chamber. Most often, the gas exits through an outlet duct in the center of the cone. Heavier or coarser particles will be separated at this point

16、, dropping into the cone to be collected through an air lock. Then either cyclones or fabric filters (or both) remove the remaining powder from the exit gas. In systems producing a very fine powder, most of the collection takes place at this point.Fluid-Bed DryingFluid-bed drying is a process in which a gas is forced upward through a bed of moist particles to achieve a fluidized state. The particles are suspended in the gas stream and dry as they

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 体育理论与教学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号