《罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析》由会员分享,可在线阅读,更多相关《罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析(15页珍藏版)》请在金锄头文库上搜索。
1、罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、,则( )A B C D2 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( )A若,则B若,则C若,则D若,则3 用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 4 在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D5 设Sn为等比数列an的前n项和,已知3S3=a42,3S2=a32,则公比q
2、=( )A3B4C5D66 下列命题中正确的是( )A若命题p为真命题,命题q为假命题,则命题“pq”为真命题B命题“若xy=0,则x=0”的否命题为:“若xy=0,则x0”C“”是“”的充分不必要条件D命题“xR,2x0”的否定是“”7 已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)8 下列各组表示同一函数的是( )Ay=与y=()2By=lgx2与y=2lgxCy=1+与y=1+Dy=x21(xR)与y=x21(xN)9 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实
3、数a的值是( )A2BCD10已知向量|=, =10,|+|=5,则|=( )ABC5D2511已知函数f(x)=sin2(x)(0)的周期为,若将其图象沿x轴向右平移a个单位(a0),所得图象关于原点对称,则实数a的最小值为( )ABCD12将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD二、填空题131785与840的最大约数为14圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为15已知一组数据,的方差是2,另一组
4、数据,()的标准差是,则 16在(1+x)(x2+)6的展开式中,x3的系数是17命题“若,则”的否命题为18双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为三、解答题19已知函数f(x0=(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f(x1)20为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)
5、据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 21从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?22(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表: 甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单
6、位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.23如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小24函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 罗甸县高中2018-201
7、9学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:棱锥的结构特征2 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确故选C考点:空间直线、平面间的位置关系3 【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C4 【答案】B【解析】【知识点】平面向
8、量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B5 【答案】B【解析】解:Sn为等比数列an的前n项和,3S3=a42,3S2=a32,两式相减得3a3=a4a3,a4=4a3,公比q=4故选:B6 【答案】 D【解析】解:若命题p为真命题,命题q为假命题,则命题“pq”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy0,则x0”,故B不正确;“”“+2k,或,kZ”,“”“”,故“”是“”的必要不充分条件,故C不正确;命题“xR,2x0”的否定是“”,故D
9、正确故选D【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答7 【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题8 【答案】C【解析】解:Ay=|x|,定义域为R,y=()2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx2,的定义域为x|x0,y=2lgx的定义域为x|x0,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x0,对应法则相同,能表示同一函数D两个函数的定义域不同,不能表示同一函数故选:C【点
10、评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数9 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题10【答案】C【解析】解:;由得, =;故选:C11【答案】D【解析】解:由函数f(x)=sin2(x)=cos2x (0)的周期为=,可得=1,故f(x)=cos2x若将其图象沿x轴向右平移a个单
11、位(a0),可得y=cos2(xa)=cos(2x2a)的图象;再根据所得图象关于原点对称,可得2a=k+,a=+,kZ则实数a的最小值为故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(x+)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题12【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是
12、函数y=Asin(x+)的图象变换,三角函数求值,难度中档二、填空题13【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10514【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=515【答案】2【解析】试题分析:第一组数据平均数为,考点:方差;标准差16【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:2017【答案】若,则【解析】试题分析:若,则,否命题要求