《【名校精品】高考数学文科一轮总复习 64》由会员分享,可在线阅读,更多相关《【名校精品】高考数学文科一轮总复习 64(7页珍藏版)》请在金锄头文库上搜索。
1、名校精品资料数学第4讲数列求和基础巩固题组(建议用时:40分钟)一、填空题1等差数列an的通项公式为an2n1,其前n项和为Sn,则数列的前10项的和为_解析因为n2,所以的前10项和为10375.答案752若数列an的通项公式为an2n2n1,则数列an的前n项和为_解析Sn2n12n2.答案2n12n23数列an的前n项和为Sn,已知Sn1234(1)n1n,则S17_.解析S171234561516171(23)(45)(67)(1415)(1617)11119.答案94(2014西安质检)已知数列an满足a11,an1an2n(nN*),则S2 012_.解析a11,a22,又2.2.
2、a1,a3,a5,成等比数列;a2,a4,a6,成等比数列,S2 012a1a2a3a4a5a6a2 011a2 012(a1a3a5a2 011)(a2a4a6a2 012)321 0063.答案321 00635(2014杭州模拟)已知函数f(x)x22bx过(1,2)点,若数列的前n项和为Sn,则S2 012的值为_解析由已知得b,f(n)n2n,S2 01211.答案6在等比数列an中,若a1,a44,则公比q_;|a1|a2|an|_.解析设等比数列an的公比为q,则a4a1q3,代入数据解得q38,所以q2;等比数列|an|的公比为|q|2,则|an|2n1,所以|a1|a2|a3
3、|an|(12222n1)(2n1)2n1.答案22n17(2013山西晋中名校联合测试)在数列an中,a11,an1(1)n(an1),记Sn为an的前n项和,则S2 013_.解析由a11,an1(1)n(an1)可得a11,a22,a31,a40,该数列是周期为4的数列,所以S2 013503(a1a2a3a4)a2 013503(2)1 1 005.答案1 0058(2014武汉模拟)等比数列an的前n项和Sn2n1,则aaa_.解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列a
4、aa(4n1)答案(4n1)二、解答题9(2013江西卷)正项数列an满足:a(2n1)an2n0.(1)求数列an的通项公式an;(2)令bn,求数列bn的前n项和Tn.解(1)由a(2n1)an2n0得(an2n)(an1)0,由于an是正项数列,则an2n.(2)由(1)知an2n,故bn,Tn.10(2014东山二中月考)设等差数列an的前n项和为Sn,且S44S2,a2n2an1.(1)求数列an的通项公式(2)设数列bn的前n项和为Tn,且Tn(为常数)令cnb2n(nN*)求数列cn的前n项和Rn.解(1)设公差为d,则由已知,得解得a11,d2,an1(n1)22n1(2)an
5、2n1,由Tn得Tn,即TnTn1(n2)得bn0,bn(n2)cnb2nRnc1c2cn0Rn得Rn() .Rn41n能力提升题组(建议用时:25分钟)一、填空题1(2014西安模拟)数列an满足anan1(nN*),且a11,Sn是数列an的前n项和,则S21_.解析依题意得anan1an1an2,则an2an,即数列an中的奇数项、偶数项分别相等,则a21a11,S21(a1a2)(a3a4)(a19a20)a2110(a1a2)a211016.答案62(2014长沙模拟)已知函数f(n)n2cos n,且anf(n)f(n1),则a1a2a3a100_.解析若n为偶数,则anf(n)f
6、(n1)n2(n1)2(2n1),为首项为a25,公差为4的等差数列;若n为奇数,则anf(n)f(n1)n2(n1)22n1,为首项为a13,公差为4的等差数列所以a1a2a3a100(a1a3a99)(a2a4a100)503450(5)4100.答案1003设f(x),利用倒序相加法,可求得f f f 的值为_解析当x1x21时,f(x1)f(x2) 1.设Sf ff,倒序相加有2Sff10,即S5.答案5二、解答题4已知数列an满足a11,a2,且3(1)nan22an2(1)n1(n1,2,3,)(1)求a3,a4,a5,a6的值及数列an的通项公式;(2)令bna2n1a2n,记数列bn的前n项和为Tn,求证:Tn3.(1)解分别令n1,2,3,4,可求得a33,a4,a55,a6.当n为奇数时,不妨设n2m1,mN*,则a2m1a2m12,所以a2m1为等差数列所以a2m11(m1)22m1,即ann.当n为偶数时,设n2m,mN*,则a2m2a2m,所以a2m为等比数列,a2mm1.故an . 综上所述,an(2)证明bna2n1a2n(2n1),所以Tn135(2n1),所以Tn13(2n3)(2n1).两式相减,得Tn2(2n1) 2(2n1),所以Tn3.故Tn3.