《第十二章相关与回归分析.doc》由会员分享,可在线阅读,更多相关《第十二章相关与回归分析.doc(16页珍藏版)》请在金锄头文库上搜索。
1、第十二章 相关与回归分析第一节 变量之间的相关关系相关程度与方向因果关系与对称关系第二节 定类变量的相关双变量交互分类(列联表)削减误差比例(PRE)系数与系数第三节 定序变量的相关分析同序对、异序对和同分对Gamma系数肯德尔等级相关系数(a系数、b与c系数)萨默斯系数(d系数)斯皮尔曼等级相关(相关)肯德尔和谐系数第四节 定距变量的相关分析相关表和相关图积差系数的导出和计算积差系数的性质第五节 回归分析线性回归积差系数的PRE性质相关指数R第六节 曲线相关与回归可线性化的非线性函数实例分析(二次曲线指数曲线)一、填空1对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,依变量则一般
2、是( 随机性 )变量。2变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是( 削减误差比例 )。3依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值是服从( );(2)分布中围绕每个可能的值的( )是相同的。4在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。自变量是作为( 变化根据 )的变量,因变量是随( 自变量 )的变化而发生相应变化的变量。5根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系
3、进行测定,即建立一个相关的数学表达式,称为( 回归方程 ),并据以进行估计和预测。这种分析方法,通常又称为( 回归分析 )。6积差系数r是( 协方差 )与X和Y的标准差的乘积之比。二、单项选择1当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在( A )关系。A 直线正相关 B 直线负相关 C 曲线正相关 D 曲线负相关2评价直线相关关系的密切程度,当r在0.50.8之间时,表示( C )。A 无相关 B 低度相关 C 中等相关 D 高度相关3相关分析和回归分析相辅相成,又各有特点,下面正确的描述有( D )。A在相关分析中,相关的两变量都不是随机的;B在回归分析中,
4、自变量是随机的,因变量不是随机的;C在回归分析中,因变量和自变量都是随机的;D在相关分析中,相关的两变量都是随机的。4关于相关系数,下面不正确的描述是( B )。A当01时,表示两变量不完全相关;B当r=0时,表示两变量间无相关;C两变量之间的相关关系是单相关;D如果自变量增长引起因变量的相应增长,就形成正相关关系。 5欲以图形显示两变量X和Y的关系,最好创建( D )。A 直方图 B 圆形图 C 柱形图 D 散点图6两变量X和Y的相关系数为0.8,则其回归直线的判定系数为( C )。A 0.50 B 0.80 C 0.64 D 0.907在完成了构造与评价一个回归模型后,我们可以( D )。
5、A 估计未来所需样本的容量B 计算相关系数和判定系数C 以给定的因变量的值估计自变量的值D 以给定的自变量的值估计因变量的值8两变量的线性相关系数为0,表明两变量之间( D )。A 完全相关 B 无关系 C 不完全相关 D 不存在线性相关9身高和体重之间的关系是( C )。A 函数关系 B 无关系 C 共变关系 D 严格的依存关系10在相关分析中,对两个变量的要求是( A )。A 都是随机变量 B 都不是随机变量C 其中一个是随机变量,一个是常数 D 都是常数11在回归分析中,两个变量( D )。A 都是随机变量 B 都不是随机变量C 自变量是随机变量 D 因变量是随机变量12一元线性回归模型
6、和多元线性回归模型的区别在于只有一个( B )。A 因变量 B 自变量 C 相关系数 D 判定系数13以下指标恒为正的是( D )。A 相关系数r B 截距a C 斜率b D 复相关系数14下列关系中,属于正相关关系得是( A )。A 身高与体重 B 产品与单位成本C 正常商品的价格和需求量 D 商品的零售额和流通费率三、多项选择1关于积差系数,下面正确的说法是( ABCD )。A 积差系数是线性相关系数B 积差系数具有PRE性质C 在积差系数的计算公式中,变量X和Y是对等关系D 在积差系数的计算公式中,变量X和Y都是随机的2关于皮尔逊相关系数,下面正确的说法是( )。 A 皮尔逊相关系数是线
7、性相关系数 B 积差系数能够解释两变量间的因果关系 C r公式中的两个变量都是随机的 D r的取值在1和0之间E 皮尔逊相关系数具有PRE性质,但这要通过r2加以反映3简单线性回归分析的特点是( ABE )。A 两个变量之间不是对等关系B 回归系数有正负号C 两个变量都是随机的D 利用一个回归方程,两个变量可以互相推算E 有可能求出两个回归方程4反映某一线性回归方程y=a+bx好坏的指标有( ABD )。A 相关系数 B 判定系数C b的大小 D 估计标准误 E a的大小5模拟回归方程进行分析适用于( ACDE )。A 变量之间存在一定程度的相关系数B 不存在任何关系的几个变量之间C 变量之间
8、存在线性相关D 变量之间存在曲线相关E 时间序列变量和时间之间6判定系数r2=80%和含义如下( ABC )。A 自变量和因变量之间的相关关系的密切程度B 因变量y的总变化中有80%可以由回归直线来解释和说明C 总偏差中有80%可以由回归偏差来解释D 相关系数一定为0.64 E 判定系数和相关系数无关7回归分析和相关分析的关系是( ABE )。A 回归分析可用于估计和预测B 相关分析是研究变量之间的相互依存关系的密切程度C 回归分析中自变量和因变量可以互相推导并进行预测D 相关分析需区分自变量和因变量E 相关分析是回归分析的基础8以下指标恒为正的是( BC )。A 相关系数 B 判定系数 C
9、复相关系数 D 偏相关系数 E 回归方程的斜率9一元线性回归分析中的回归系数b可以表示为(BC)A 两个变量之间相关关系的密切程度B 两个变量之间相关关系的方向C 当自变量增减一个单位时,因变量平均增减的量D 当因变量增减一个单位时,自变量平均增减的量E 回归模型的拟合优度10关于回归系数b,下面正确的说法是( )。 A b也可以反映X和Y之间的关系强度。; B 回归系数不解释两变量间的因果关系; C b公式中的两个变量都是随机的; D b的取值在1和-1之间;E b也有正负之分。四、名词解释1消减误差比例变量间的相关程度,可以用不知Y与X有关系时预测Y的误差,减去知道Y与X有关系时预测Y的误
10、差,再将其化为比例来度量。将削减误差比例记为PRE。2 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。确定性关系往往表现成函数形式。3非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。4因果关系变量之间的关系满足三个条件,才能断定是因果关系。1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。5单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。三个或三
11、个以上的变量之间的相关关系则称为复相关,又称多元相关。6正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。7散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X与Y的相互关系,即得相关图,又称散点图。8皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X、Y的标准差乘积的比率。9同序对在观察X序列时,如果看到,在Y中看到的是,则称这一配对是同序对。10异序对在观察X序列时,如果看到,在Y中看到的是,则称这一配对是异序对。11同分对如果在X序列中,我们观察到(此时Y序列中无),则这个
12、配对仅是X方向而非Y方向的同分对;如果在Y序列中,我们观察到(此时X序列中无),则这个配对仅是Y方向而非X方向的同分对;我们观察到,也观察到,则称这个配对为X与Y同分对。五、判断题1由于削减误差比例的概念不涉及变量的测量层次,因此它的优点很明显,用它来定义相关程度可适用于变量的各测量层次。 ( )2不管相关关系表现形式如何,当1时,变量X和变量Y都是完全相关。( )3不管相关关系表现形式如何,当0时,变量X和变量Y都是完全不相关。( )4通过列联表研究定类变量之间的关联性,这实际上是通过相对频数条件分布的比较进行的。而如果两变量间是相关的话,必然存在着Y的相对频数条件分布相同,且和它的相对频数
13、边际分布相同。 ( ) 5如果众数频数集中在条件频数分布列联表的同一行中,系数便会等于0,从而无法显示两变量之间的相关性。 ( )6从分析层次上讲,相关分析更深刻一些。因为相关分析具有推理的性质,而回归分析从本质上讲只是对客观事物的一种描述,知其然而不知其所以然。 ( )六、计算题1对某市市民按老中青进行喜欢民族音乐情况的调查,样本容量为200人,调查结果示于下表,试把该频数列联表:转化为相对频数的联合分布列联表转化为相对频数的条件分布列联表;指出对于民族音乐的态度与被调查者的年岁有无关系,并说明理由。 对于民族音乐的态度(Y)年岁(X)老 中 青 喜 欢 不喜欢38 38 3015 33 462已知十名学生身高和体重资料如下表,(1)根据下述资料算出身高和体重的皮尔逊相关系数和斯皮尔曼相关系数;(2)根据下述资料求出两变量之间的回归方程(设身高为自变量,体重为因变量)。身高(cm)171167177154169体重(kg)