2023年第三章22.doc

上传人:鲁** 文档编号:548096112 上传时间:2023-09-24 格式:DOC 页数:14 大小:94.50KB
返回 下载 相关 举报
2023年第三章22.doc_第1页
第1页 / 共14页
2023年第三章22.doc_第2页
第2页 / 共14页
2023年第三章22.doc_第3页
第3页 / 共14页
2023年第三章22.doc_第4页
第4页 / 共14页
2023年第三章22.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《2023年第三章22.doc》由会员分享,可在线阅读,更多相关《2023年第三章22.doc(14页珍藏版)》请在金锄头文库上搜索。

1、2古典概型2.1古典概型的特征和概率计算公式学习目标1.了解基本事件的特点(重点).2.理解古典概型的定义(重点).3.会应用古典概型的概率公式解决实际问题(重、难点).预习教材P130133完成下列问题:知识点1基本事件1.基本事件的定义试验的每一个可能结果称为基本事件,它们是试验中不能再分的最简单的随机事件.一次试验中只能出现一个基本事件.如在掷一枚质地均匀的骰子试验中,出现“1点”“2点”“3点”“4点”“5点”“6点”,共6个结果,这就是这一随机试验的6个基本事件.2.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.如在掷一枚质地均

2、匀的骰子试验中,随机事件“出现奇数点”可以由基本事件“出现1点”“出现3点”“出现5点”共同组成.【预习评价】“抛掷两枚硬币,至少一枚正面向上”是基本事件吗?提示不是.“抛掷两枚硬币,至少一枚正面向上”包含一枚正面向上,两枚正面向上,所以不是基本事件.知识点2古典概型1.古典概型的定义(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的特点(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件.(2)等可能性:每个基本事件发生的可

3、能性是相等的.3.古典概型的概率公式对于任何事件A,P(A).【预习评价】判断给出的下列事件是否是古典概型(正确的打,错误的打)(1)任意抛掷两枚骰子,所得点数之和作为基本事件()(2)求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时()(3)从甲地到乙地共n条路线,求某人正好选中最短路线的概率()(4)抛掷一枚均匀硬币首次出现正面为止()提示(1)中由于点数的和出现的可能性不相等,故(1)不是;(2)中的基本事件是无限的,故(2)不是;(3)中满足古典概型的有限性和等可能性,故(3)是;(4)中基本事件既不是有限个也不具有等可能性,故(4)不是.答案(1)(2)(3)

4、(4)题型一基本事件的定义及特点【例1】一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)共有多少个基本事件?(2)2个都是白球包含几个基本事件?解方法一(1)采用列举法.分别记白球为1,2,3号,黑球为4,5号,则有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个(其中(1,2)表示摸到1号、2号).(2)“2个都是白球”包含(1,2),(1,3),(2,3)三个基本事件.方法二(1)采用列表法.设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.

5、列表如下:由于每次取2个球,因此每次所得的2个球不相同,而事件(b,a)与(a,b)是相同的事件,故共有10个基本事件.(2)“2个都是白球”包含(a,b),(b,c),(c,a)三个基本事件.规律方法1.求基本事件的基本方法是列举法.基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.2.当基本事件个数较多时还可应用列表法或树形图法求解.【训练1】 做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出

6、现点数之和等于7”.解(1)这个试验的基本事件共有36个,列举如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),

7、(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).题型二利用古典概型公式求概率【例2】从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:(1)事件A三个数字中不含1和5 ;(2)事件B三个数字中含1或5.解这个试验的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5

8、),(2,3,4),(2,3,5),(2,4,5),(3,4,5),所以基本事件总数n10.(1)因为事件A(2,3,4),所以事件A包含的事件数m1.所以P(A).(2)因为事件B(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5),所以事件B包含的基本事件数m9.所以P(B).规律方法1.古典概型概率求法步骤:(1)确定等可能基本事件总数n;(2)确定所求事件包含基本事件数m;(3)P(A).2.使用古典概型概率公式应注意:(1)首先确定是否为古典概型;(2)事件A是什么,包含的基本事件有哪些.【训练

9、2】 抛掷两枚骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率.解如图,基本事件与所描点一一对应,共36种.(1)记“点数之和是4的倍数”的事件为A,从图中可以看出,事件A包含的基本事件共有9个,即(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6).所以P(A).(2)记“点数之和大于5小于10”的事件为B,从图中可以看出,事件B包含的基本事件共有20个,即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(2,6),(3,5),

10、(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3).所以P(B).【探究1】用三种不同的颜色给如图所示的3个矩形随机涂色,每个矩形只涂一种颜色.(1)求3个矩形颜色都相同的概率;(2)求3个矩形颜色都不相同的概率;(3)求3个矩形颜色不都相同的概率.解设3个矩形从左到右依次为矩形1、矩形2、矩形3.用三种不同的颜色给题目中所示的3个矩形随机涂色,可能的结果如图所示.由图知基本事件共有27个.(1)记“3个矩形颜色都相同”为事件A,由图,知事件A的基本事件有3个,故P(A).(2)记“3个矩形颜色都不相同”为事件B,由图,知事件B的基本事件有6个,故P(B).(3

11、)记“3个矩形颜色不都相同”为事件C.由图,知事件C的基本事件有24个,故P(C).【探究2】甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解(1)甲校2名男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,2名女教师分别用E、F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E)

12、,(C,F),共9种.选出的2名教师性别相同的结果为(A,D),(B,D),(C,E),(C,F),共4种.所以选出的2名教师性别相同的概率为.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果为(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以选出的2名教师来自同一学校的概率为.【探究3】有A、B、C、D四位贵宾,应分别坐在a、b

13、、c、d四个席位上,现在这四人均未留意,在四个席位上随便就坐.(1)求这四人恰好都坐在自己席位上的概率;(2)求这四人恰好都没坐在自己席位上的概率;(3)求这四人恰好有1位坐在自己席位上的概率.解将A、B、C、D四位贵宾就座情况用下面图形表示出来:如上图所示,本题中的等可能基本事件共有24个.(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个基本事件,所以P(A).(2)设事件B为“这四人恰好都没坐在自己席位上”,则事件B包含9个基本事件,所以P(B).(3)设事件C为“这四人恰好有1位坐在自己席位上”,则事件C包含8个基本事件,所以P(C).规律方法求古典概型的概率的关键是

14、求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.课堂达标1.抛掷一枚骰子,出现偶数的基本事件个数为()A.1 B.2 C.3 D.4解析因为抛掷一枚骰子出现数字的基本事件有6个,它们分别是1,2,3,4,5,6,故出现偶数的基本事件是3个.答案C2.在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为()A. B. C. D.解析用(A,B,C)表示A,B,C通过主席台的次序,则所有可能的次序有:(A,B,C),(A,C,B),(B

15、,A,C),(B,C,A),(C,A,B),(C,B,A),共6种,其中B先于A,C通过的有:(B,C,A)和(B,A,C),共2种,故所求概率P.答案B3.甲、乙、丙三名同学站成一排,甲站在中间的概率是_.解析基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个,甲站在中间的事件包括:乙甲丙、丙甲乙,共2个,所以甲站在中间的概率为P.答案4.“渐升数”是指每个数字比其左边的数字大的自然数(如2 578),在二位的“渐升数”中任取一数比37大的概率是_.解析十位是1的“渐升数”有8个,十位是2的“渐升数”有7个,十位是8的“渐升数”有1个;所以二位的“渐升数”有8765432136个,以3为十位比37大的“渐升数”有2个,分别以4、5、6、7、8为十位的“渐升数”均比37大,且共有5432115个,所以比37大的“渐升数”共有21517个,故在二位的“渐升数”中任取一数比37大的概率是.答案

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 其它文档 > 租房合同

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号