涂料附着力基本原理

上传人:pu****.1 文档编号:548056378 上传时间:2022-08-17 格式:DOCX 页数:4 大小:19.59KB
返回 下载 相关 举报
涂料附着力基本原理_第1页
第1页 / 共4页
涂料附着力基本原理_第2页
第2页 / 共4页
涂料附着力基本原理_第3页
第3页 / 共4页
涂料附着力基本原理_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《涂料附着力基本原理》由会员分享,可在线阅读,更多相关《涂料附着力基本原理(4页珍藏版)》请在金锄头文库上搜索。

1、、附着力理论和机理 当两物体被放在一起达到紧密的界面分子接触,以至生成新的界面层,就生成了附着力。附着力是一种复 杂的现象,涉及到“界面”的物理效应和化学反应。因为通常每一可观察到的表面都与好几层物理或化学吸附 的分子有关,真实的界面数目并不确切知道,问题是在两表面的何处划界及附着真正发生在哪里。 当涂料施工于底材上,并在干燥和固化的过程中附着力就生成了。这些力的大小取决于表面和粘结料(树脂、 聚合物、基料)的性质。广义上这些力可分为二类:主价力和次价力(表 1)。化学键即为主价力,具有比次 价力高得多的附着力,次价力基于以氢键为代表的弱得多的物理作用力。这些作用力在具有极性基团(如羧 基)的

2、底材上更常见,而在非极性表面如聚乙烯上则较少。表 1:键的强度和键能强度类型能量(千卡/摩尔)实例共价键主价力15170绝大多数有机物氢键次价力12水色散力次价力10 绝大多数分子偶极力次价力5极性有机物诱导力次价力0.5非极性有机物涂料附着的确切机理人们尚未完全了解。不过,使两个物体连接到一起的力可能由于底材和涂料通过涂料 扩散生成机械连接、静电吸引或化学键合。根据底材表面和所用涂料的物理化学性质的不同,附着可采取 上述机理的一种或几种。一些提出的理论讨论如下:1、机械连接理论 这种涂层作用机制适用于当涂料施工于含有孔、洞、裂隙或空穴的底材上时,涂料能够渗透进去。在这种 情况下,涂料的作用很

3、象木材拼合时的钉子,起机械锚定作用。当底材有凹槽并填满固化的涂料时,由于 机械作用,去掉涂层更加困难,这与把两块榫结的木块拼在一起类似。对各种表面的仪器分析和绘图(外形 图)表明,涂料确实可渗透到复杂“隧道”形状的凹槽或裂纹中,在固化硬化时,可提供机械附着。各种涂料 对老的或已风化的涂层的附着,以及对喷砂底材的附着就属于这种机理。磷酸锌或铁与涂料具有较大的接 触面积,因而能提高附着和耐蚀性。表面的粗糙程度影响涂料和底材的界面面积。因为去除涂层所需的力与几何面积有关,而使涂层附着于底 材上的力与实际的界面接触面积有关。随着表面积增大,去除涂层的困难增加,这通常可通过机械打磨方 法提供粗糙表面来实

4、现。(截面的几何面积和实际的界面面积的比较见图 3)。实际的界面接触面积一般比 几何面积大好几倍。通过喷砂使表面积增加,结果附着力增加,见图 4。显然由于其他许多因素的影响, 附着并不按相同比例增加,不过通常可见到显着的增加。只有当涂料完全渗透到不规则表面处,提高表面粗糙度才有利,若不能完全渗入,则涂料与表面的接触会 比相应的几何面积还小,并且在涂料和底材间留有空隙,空隙中驻留的气泡会导致水汽的聚积,最终导致 附着力的损失。经常通过对已固化的涂层进行磨砂处理,可改进层间附着力(特别是在汽车涂料中),特别是在底色漆/清漆 体系中,要求清漆平滑、光亮且表面能低,因此第二层清漆的附着有一定的困难。这

5、一问题当涂料在比原 定温度高得多的温度下固化或烘烤时间延长时变得更为严重,这两种情况下,对该表面进行轻度打磨表明, 附着力可显着提高。 虽然表面粗糙化能提高附着力,但必须注意避免深而尖的形状,由于粗糙化生成的尖 峰会导致透影(看到底材),在某些情况下并不希望这样;而且,深而尖的隆起会形成不均一的涂层,从而生 成应力集中点,附着力降低,从而耐久性下降。只要涂膜稍具流动性,涂膜收缩,厚度不均匀以及三维尺寸的变化就很少会生成不可释放应力,但随着粘度 和涂层刚性的增加以及对底材的附着力逐渐形成会生成大量的应力,并残留于干漆膜中。显然在固定施工 参数(湿膜和干膜厚度)时,凸起部分的涂层厚度比凹陷处小,导

6、致物理性质不同。这种不均一涂层具有很高 的内部应力,在投入应用时,会进一步受到修补漆溶剂的侵蚀或老化的影响,偶而会超过涂膜的应力承受 能力,导致裂纹、剥落或其他涂膜完整性的降低。电镀金属对聚乙烯和ABS塑料的附着力证明是来源于机械连接。金属电镀工艺包括首先对塑料表面处理, 生成大量的机械凹陷,有利于机械连结,然后用氯化亚锡溶液活化,并在Pd2+溶液中使Pd沉积,不通电 沉积镍,然后电镀所需金属,如铬。只有当塑料处理后生成连接凹陷时,电镀金属对塑料的附着力才强。 不同预处理金属不仅改变表面的化学组成,而且会生成表面连接点,机械连结对这类表面起着即使不是最 关键,也是相当大的作用。未处理和磷化处理

7、的冷轧钢板的表面形态,磷化后表面上可发现大量的交错的磷酸铁微芯片,芯片间的空 间提供了大量的物理连接点。2. 化学键理论 在界面间可能形成共价键,且在热固性涂料中更有可能发生,这一类连结最强且耐久性最佳,但这要求相 互反应的化学基团牢牢结合在底材和涂料上。因为界面层很薄,界面上的化学键很难检测到。然而,如下 面所讨论的,确实发生了界面键合,从而大大提高了粘结强度。有些表面,如已涂过的表面、木材、复合 物和有些塑料,会有各种各样的化学官能团,在合适的条件下,可和涂层材料形成化学键。有机矽烷广泛用于玻璃纤维的底漆以提高树脂和纤维增强塑料中玻璃的附着力,也可用作底漆或一体化混 合物以促进树脂对矿石、

8、金属和塑料的附着力。实质上,应用时生成了矽醇基,可与玻璃表面的矽醇基, 或者也可能与其他金属氧化物形成强的醚键 。这类化学键合可发生在玻璃、陶瓷及一些金属底材表面的金 属氢氧化物和含矽烷涂料间。含反应性基团如羟基和羧基的涂料倾向于和含有类似基团的底材更牢固地附着,这种机理的一个例子是三 聚氰胺固化丙烯酸面漆对三聚氰胺固化聚酯底漆的优异附着力,一种可能的解释是已固化底漆的剩余羟基 会与面漆的三聚氰胺固化剂反应,实际上把底漆和面漆拉在了一起。当该涂料过烘烤(烘烤时间过长和/或固 化温度过高)时,面漆的附着力显着减弱,有时甚至无附着力。剩余羟基会对附着力有贡献可从IR谱图得 到证实:标准烘烤的底漆富

9、含羟基,而过烘烤底漆即使有也只有很少的羟基。当底材含有反应性羟基时,在适当的条件下也会和热固性聚氨酯涂料发生化学反应。 化学键合也完全可适用于解释环氧树脂涂料对纤维素底材的优异附着力。显然,正如红外光谱所证实的, 界面上环氧树脂的环氧基和纤维素的羟基发生反应,导致纤维素上羟基伸缩振动峰3350cm-1和C-O的伸 缩振动峰11001500cm-1的消失,同时环氧树脂的环氧基915cm-1峰和氧桥对称伸缩振动峰1160cm-1 消失。有些聚合物对已交联的聚合物表面附着较弱,出现界面性的缺损。有报导称加入少量的某些含氮基团能大 大提高附着力。例如氨基聚合物对交联醇酸树脂具有很强的附着力,因为界面上

10、两相间发生氨-酯交换反应, 形成酰胺键。R1NH2+RCOOR2RCONH-R1以丁胺作氨基聚合物的模型化合物可以很容易发现氨 -酯交换反应。当胺加入未固化醇酸树脂的甲苯溶液 中,两者在室温下很易反应形成二丁基苯二酰胺,并会结晶而析出。FTIR光谱法检测氨基树脂和未固化醇酸树脂的混合物发现,混合物烘烤后胺基吸收峰下降,同时出现酰胺 吸收峰,表明在界面上确实发生了氨-酯交换反应。3. 静电理论 可以想像以带电双电层形式存在的静电作用力形成于涂层-表面的界面上,涂层和表面均带有残余电荷,散 布于体系中,这些电荷的相互作用能提高一些附着力。静电力主要是色散力和来源于永久偶极子的相互作 用力。含有永久

11、偶极子物质的分子间的吸引力由一个分子的正电区和另一分子的负电区的相互作用引起。涂料润湿固体表面的程度通过接触角0测定诱导偶极子间的吸引力,称为伦敦力或色散力是范德华力的一 种,也对附着力有所贡献,对某些底材/涂料体系,这些力提供了涂料和底材间的大部分吸引力。应该注意 到这些相互作用只是短程相互作用,与涂料/底材间距离的六次方或七次方成反比。因为当距离超过0.5纳 米(5 埃)时,这些力的作用明显下降,所以涂层和底材的密切接触是必要的。4. 扩散理论 当涂料和底材(聚合物)这两相通过润湿达到分子接触时,根据材料的性质和固化条件的不同,大分子上的某 些片段会向界面另一边进行不同程度的扩散。这种现象

12、需经两步完成,即润湿之后链段穿过界面相互扩散 形成交错网状结构。 因为长链性质不同和扩散系数较低,非相似聚合物通常不兼容,因此,完整的大分子穿过界面扩散是不可 能的。然而,理论和实验资料表明,局部链段扩散很容易发生,并在聚合物间形成101000埃的扩散界 面层。涂料的扩散也从接触时间、固化温度和分子结构(分子量、分子链柔性、侧链基团、极性、双键和物 理兼容性)的影响间接得到证实。直接的证据则包括扩散系数的测定、电镜对界面结构的观察、辐射热致发 光技术和光学显微镜。显然,这种扩散最易发生在诸如工程塑料的聚合物底材上,因为分子间自由体积较 大,且与金属相比分子间距离大得多。二、附着形成机理 当不相

13、似的两种材料达到“紧密”接触时,在空气中的两个自由表面消失,形成新的界面。界面相互作用的性 质决定了涂料和底材之间成键的强度,这种相互作用的程度基本由一相被另一相的润湿性决定,使用液体 涂料时,液相的流动性也有很大帮助,因此润湿可被看作涂料和底材的密切接触。为了保持涂层与底材的 附着力,除了保证初步的润湿外,在涂膜形成后的完全润湿和固化后仍保持键合情况不变是很重要的。 涂料以下面的方式固化成膜:(a) 冷却到熔融温度(玻璃化温度,Tg)以下,或(b) 化学交联反应,或(c) 溶剂和稀释剂的挥发(a) 类涂料的例子如热塑性粉末涂料或用于金属或聚合物上的热熔挤压聚合物膜。(b) 类涂料包括单或双组

14、份可交联环氧、聚氨酯或三聚氰胺固化丙烯酸体系。(c) 类涂料如印刷油墨和清漆,该类型涂料中颜料的粘结料在干燥时也有交联能力。因此涂料对底材的润湿 是形成附着键的关键。1. 润湿性和表面能 考查附着力时润湿性是必须的标准。前所讨论的附着机理只有当底材和涂料达到有效润湿时才起作用。表 面的润湿可从热力学角度描述,涂料在液态时的表面张力以及底材和固态涂膜的表面能是影响界面连接强 度和附着力形成的重要参数。均相的固体或液体表面的分子或原子的周围环境与内部不同。在内部分子被相同的分子所包围,分子间的 距离由把分子拉到一起的吸引力和阻止分子占据同一位置的排斥力的平衡决定;而界面上的分子各个方向 受力不均匀

15、,它们和表面以上的空气相互作用,同时受表面以下分子的吸引。表面下的分子倾向于将表面 分子向内拉,使表面分子数最小,因而表面积也最小,这种吸引提高了液体的表面张力,并可解释液体以 液滴形式存在,好象被一层弹性表皮覆盖。而且表面分子间的距离比体相大,因而能量更高。把分子从内 部移到表面需要做功,液体增加单位表面积导致的Helmholtz自由能的增加值定义为表面张力。2. 界面热力学液体涂料对固态表面的润湿程度通过接触角(8)来测定,如图13。当0=0,液体在表面自由铺展,称为完全 润湿。当液相和固相分子的分子吸引大于类似的液体分子时,发生完全润湿。3. 接触角和临界表面张力 测定固体表面张力广泛采

16、用的办法是测量接触角。通过测定接触角来计算表面自由能的办法多有争议,该 问题至今仍未解决,因为固体的表面自由能不能直接测定。然而本专题的用意并非讨论这些观点,作者旨 在通过列举有争议的观点,为操作者提供可靠的指导,使读者在估计表面热力学参数时前进一步。 近似的表观接触角可通过检测设备供应商提供的各种接触角仪测定。该法中滴一滴各种不同的液体在待测 的表面上,并测定接触角。表面性质测定的一种方法是临界表面张力YC,该法系通过测定一系列液体在表 面上的接触角,以接触角的余弦对各种液体的表面张力作图,并外推至Cos0=1(0=O)。外推表面张力称为 表面的临界表面张力。例如根据上述程序,聚乙烯的临界表面张力为 31 达因/厘米。当一液滴滴于该表面 上时,所有表面张力小于或等于该临界表面张力的液体会自发铺展。因此,环氧树脂的表面张力为 47 达因 /厘米,不会润湿聚

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号