第六章车身的简化计算.doc

上传人:枫** 文档编号:547585252 上传时间:2023-03-30 格式:DOC 页数:33 大小:2.45MB
返回 下载 相关 举报
第六章车身的简化计算.doc_第1页
第1页 / 共33页
第六章车身的简化计算.doc_第2页
第2页 / 共33页
第六章车身的简化计算.doc_第3页
第3页 / 共33页
第六章车身的简化计算.doc_第4页
第4页 / 共33页
第六章车身的简化计算.doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《第六章车身的简化计算.doc》由会员分享,可在线阅读,更多相关《第六章车身的简化计算.doc(33页珍藏版)》请在金锄头文库上搜索。

1、第六章 车身的简化计算6-1 概 述到目前为止,对待汽车尤其是车身计算载荷的方法,与对待其它交通工具的方法是不一样的。至今未制订出计算载荷的基本准则。如:飞机、船舶、铁道车辆等以载荷的各种计算方法和标准规范为基础。 不平路面汽车激起不同的振动车身、车架承受随机载荷汽车结构产生疲劳损坏。 难以准确确定,随着科学技术的发展如随机振动理论、结构分析技术、测试技术等的迅猛发展,为深入开展此项研究提供了基础。汽车行驶中所受的载荷一两大类:1疲劳载荷造成疲劳破坏的随机载荷。只能用统计的方法描述。获得方法: 道路试验法对汽车在典型路面上进行短距离实测,然后用数理统计的方法对所测得的资料进行整理和推断,最后编

2、制成载荷谱的方法来取得载荷资料。 数学分析法根据积累的路面不平度的测量统计资料(路面功率谱密度)和反映结构参数的系统频率响应函数求得相应的输出功率谱和均方值进而求出构件的载荷方差和均方值。可参考有关资料。疲劳载荷适用于计算零部件的疲劳强度,估算疲劳寿命。2偶然的大载荷偶然因路面冲击引起这种大载荷将使构件的工作应力超过材料的屈服极限或强度极限而破坏。试验表明:若结构尺寸选择正确,能承受最大的偶然载荷的作用,则它的疲劳强度也足够。学习本章的目的在于对计算所需外力进行系统分析并给予科学、合理的确定。6-2 车身的计算载荷一、动载荷和静载荷的关系静载荷静止时,汽车悬挂着的自身载荷Gr和车身有效载荷(悬

3、挂质量和额定装载质量)。动载荷汽车在不平路面上行驶时所承受的载荷。汽车行驶时所受的载荷:经验表明:如结构的尺寸选择正确,该结构能承受最大的偶然载荷的作用,因此,疲劳强度亦足够。载荷计算的问题可以归结为如何确定动载荷向静载荷转变的系数。由车轴上的载荷分配静载荷的大小,用动载荷系数以车身壳体的静力分析取代疲劳计算。汽车行驶时,作用在车身上的惯性力Fd与自重和有效重量,以及加速度成正比:式中:Fst静力,求自重量在车轴上的分配,N; g重力加速度,m/s2; a汽车加速度,m/s2; m动载系数,m=a/g。 即:动载力可以简化为一个静力与动载系数的乘积。在一般情况下,汽车行驶时作用在车身上有三个力

4、和三个力矩:三个方向的力:垂直方向: Fz=mzGs式中:mz垂直方向动载系数; Gs悬挂质量,N。横向: Fy=myGs 行驶方向(纵向):Fx=mxG 式中:mx、mY汽车纵向和横向动载系数。三个方向的力矩水平面内弯曲力矩: Mz绕z轴,xy平面内扭转力矩: Mx绕x轴垂直平面内弯曲力矩:My绕y轴因所有壳体的EJx很大(材料的弹性模量和绕X轴的极惯性矩),在一般计算时,MZ可以忽略不计。二、对称垂直载荷与汽车纵轴线对称的垂直载荷,是汽车行驶于不平路面上当前后两车轮同时碰到障碍物时产生。Fzs=mzsGs (N)式中:mzs对称加载(垂直载荷)时的动载系数。Fzs将引起弯曲力矩My,使车身

5、壳体在垂直方向发生弯曲变形。大量试验表明,最大垂直对称加速度值:轿车和客车在1.52.5g范围,而载重汽车其数值范围将更大一些。一般,对称加载动载系数: 轿 车: mzs=2.02.5; 客 车: mzs=2.02.5; 载重汽车: mzs=3.0; 特种汽车: mzs=3.54.0。mzs也可按下式计算:日本推荐,前后轮同时驶上具有相等凸起高度的地面障碍时的动载系数(半经验公式):式中:Ga汽车总重力,N; C1、C2前、后悬架与轮胎的合成刚度,N/mm; Ct1、Ct2前、后轮胎刚度,N/mm; Cs1、Cs2前、后悬架刚度,N/mm; 悬架变形系数: h路障高度,mm。轿车、客车:h=8

6、0mm; 货车:h=100mm。 经验系数,取1000(km/h)2; Va车速,km/h。上式说明了动载系数与路面不平、车速、汽车结构参数的关系。如:Vamzs当 Va100km/h时,0.1, mzs定值 h或Cmzs上述所推荐的mzs值,因越来越精确的车身计算方法得到应用,以及制造工艺的发展,悬挂及轮胎特性的改善车身加速度得以降低,加工缺陷得以改善,mzs有减小的趋势。三、非对称垂直载荷与汽车纵轴线不对称的垂直载荷。产生原因:汽车行驶时车轮不同时碰到障碍物时产生。结果:同一根轴上的左右车轮上作用着不同的支反力,致使车身除承受弯曲力矩外,还承受扭转力矩的作用。1非对称垂直加载时的力弯曲工况

7、,垂直载荷产生Fzn=mznsGs N式中:mzns非对称垂直加载的动载系数; Gs悬挂质量,N。2由车轮悬挂产生的扭转力矩扭转载荷,因路面凸起而产生的不对称于汽车纵轴的垂直载荷使车身绕X轴扭转。Ms=mzns(Rfr- Rf1) (Nm)式中:Rfr- Rf1左、右前轮上作用力的差,N;Bf前轮距,m。 扭转力矩Ms(或Tx)取决于一般:轿车:mzns=1.3 载重汽车:mzns=1.5 客车:mzns=1.3 特种汽车:mzns=1.83非对称垂直载荷的特点1非对称垂直载荷取决于动载系数mzn和悬挂质量Gs非对称垂直载荷产生的扭转力矩,取决于: 动载系数mzn 作用在车轮上的力的差值:Rf

8、r- Rf1 前轮距:Bf2Rfr- Rf1取决于某一车轮所碰撞的障碍物的高度h极限工况下,Rfr- Rf1=Rf(前轴反力),若某一车轮悬空,即: Rfr=Rf Rf1=0 以左轮悬空为例3一个车轮脱离路面4车身壳体的扭转变形一般,车身壳体的扭转变形与悬架、轮胎等弹性元件相比微小得多(10%),常忽略不计使分析计算时对h的考虑变得简单,可以在初步设计的最初阶段进行壳体扭转刚度计算的全部车身截面尚未完全确定时,就考虑不平高度h。4非对称垂直载荷的计算 设:当车轮碰撞到单个凸台时,根据卡尔茨的研究结果,悬挂与 车身的位移:式中:ft1、ft2前后轮胎的变形,取悬架变形的10%20%,mm; fs

9、1、fs2前后弹簧或悬架的变形,mm; Bf、Br前后轮矩,mm; Z1、Z2前后弹簧的左右弹簧间的距离,mm。式中第一项ft1、第二项Bf表示前车轴抬高量的表达式,取决于前轮与前悬架装置的参数;第三项Bf(ft2/Br),第四项Bf(fs2/Z2)表示产生于后轮的相应的反作用力矩所引起的后轮与后悬架变形的结果,即后悬挂参数的影响。 当碰到道路的两个不平度时设左前轮、右后轮碰到障碍,则汽车前面或后面部分随车轴承载状况变化而发生的位移:式中:ft轮胎变形,mm; fs悬架或弹簧变形,mm; B轮距,mm; Z左右弹簧的距离,mm。 若给定汽车的计算载荷与悬挂和轮胎的刚度,则:对单个不平度:对两个

10、不平度,使一个车轮开始脱离地面的凸起高度值:式中:Rf前轴上的载荷,N; B轮距(注脚f前轮距,r后轮距),mm; Ct轮胎的刚度系数,N/mm; Cs悬挂的刚度系数,N/mm。计算位移h1和h2应与汽车所能克服的实际不平度进行比较。据大量的统计研究,各类汽车所能克服的实际道路不平度为:如果计算出的悬架参数满足h1、2 H,则出现一个车轮离开路面的极限情况。此时,根据力矩平衡方程式,可求出作用于车轮上的力和转矩为:右前轮作用力:Rf1=0 左前轮作用力:Rfr=mznsRf (N) 右后轮作用力:Rr1=mzns (N) 左后轮作用力:Rrr=mzns (N) 扭转力矩: Ms= mznsRf

11、 (Nm)可见,作用于承载系统上的最大转矩发生于荷重较小的车轴上的一个车轮离开路面时,所以,上述公式是基于RfH,则作用在车轮上的力和汽车上的转矩为:右前轮上的作用力:Rf1= mzns (N)左前轮上的作用力:Rfr= mzns (N)右后轮上的作用力:Rr1= mzns (N)左后轮上的作用力:Rrr= mzns (N)汽车上的转矩:Ms= mznsRf (Nm)实践证明,大多数汽车不会发生车轮脱离路面的现象,可以用上述方法进行验证,并计算作用在汽车上的力。在进行车身的结构计算时,也可以根据驶过路面凸起时车轮的抬起高度求得车身支承处的位移,作为车身计算的已知条件。四、纵向载荷汽车在制动、加

12、速以及碰撞到道路不平障碍时产生。在考虑汽车的安全性时,需确定一旦发生碰撞时保险杠所受力的大小。一般:轿车最大制动减速度:a=10m/s2; 客车和载重汽车: a=7m/s2;突然松开离合器踏板或制动踏板,所产生的附加速度,可取制动时的减速度值。实际上要小些。一般情况下,由于行驶速度改变而引起的纵向力:Fx=mxGs (N)式中:mx纵向力动载荷系数,mx=0.71.0;Gs悬挂质量,N。当车轮碰上前述所列数据的障碍时,通过悬架固定点传到汽车壳体上的纵向力将会很大 Fx=mxRftg式中:Rf车轮碰撞到宽的障碍 物时前轴上的静载 荷,或当车轮碰上窄的障碍物时一个前轮上的静载荷(计算与非对称载荷相同); 力作用点夹角,取决于rd(胎径)、h(障高);=arcsin(1-) Rd车轮的动力半径,mm; h不平度的实际高度,mm。五、侧向载荷汽车沿曲线轨迹行驶或侧面撞到障碍物时产生。1曲线行驶产生的侧向力曲线行驶产生的侧向载荷,在Fy为极限数值时由外轮的地面侧向反力所平衡。即:FyFymax时, Fy=Ry地面对车轮的侧向反力;当惯性力C继续FyRymax地面侧向附着力。最大可能的离心力取决于轮距B和汽车的重心高度hg。由: tg=式中:B轮距,mm; hg重心离地高度,mm; Cy惯性力的侧向分力,N。可得: Cy =Ry=mzsG (N)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号