原子的结构和性质.doc

上传人:cn****1 文档编号:547535146 上传时间:2023-08-23 格式:DOC 页数:20 大小:488.01KB
返回 下载 相关 举报
原子的结构和性质.doc_第1页
第1页 / 共20页
原子的结构和性质.doc_第2页
第2页 / 共20页
原子的结构和性质.doc_第3页
第3页 / 共20页
原子的结构和性质.doc_第4页
第4页 / 共20页
原子的结构和性质.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《原子的结构和性质.doc》由会员分享,可在线阅读,更多相关《原子的结构和性质.doc(20页珍藏版)》请在金锄头文库上搜索。

1、02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R及整数n1、n2的数值。 解:将各波长换算成波数: 由于这些谱线相邻,可令,。列出下列4式:(1)(2)得: 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得:因而,氢原子可见光谱(Balmer线系)各谱线的波数可归纳为下式:式中,。【2.2】按Bohr模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。解:根据Bo

2、hr提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即: n=1,2,3,式中,和分别是电子的质量,绕核运动的半径,半径为时的线速度,电子的电荷和真空电容率。同时,根据量子化条件,电子轨道运动的角动量为: 将两式联立,推得: ; 当原子处于基态即n=1时,电子绕核运动的半径为: 若用原子的折合质量代替电子的质量,则:基态时电子绕核运动的线速度为: 【2.3】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。(b)上述两谱线产生的光子能否使:(i)处于基态的另一氢原子电离?(ii)

3、金属铜中的铜原子电离(铜的功函数为)?(c)若上述两谱线所产生的光子能使金属铜晶体的电子电离,请计算出从金属铜晶体表面发射出的光电子的德补罗意波的波长。解:(a)氢原子的稳态能量由下式给出: 式中n是主量子数。 第一激发态(n2)和基态(n1)之间的能量差为:原子从第一激发态跃迁到基态所发射出的谱线的波长为:第六激发态(n7)和基态(n1)之间的能量差为:所以原子从第六激发态跃迁到基态所发射出的谱线的波长为:这两条谱线皆属Lyman系,处于紫外光区。(b)使处于基态的氢原子电离所得要的最小能量为:E=E-E1=-E1=2.1810-18J而 E1=1.6410-18JE E6=2.1410-1

4、8JCu=7.4410-19JE6Cu=7.4410-19J所以,两条谱线产生的光子均能使铜晶体电离。(c)根据德布罗意关系式和爱因斯坦光子学说,铜晶体发射出的光电子的波长为: 式中E为照射到晶体上的光子的能量和Cu之差。应用上式,分别计算出两条原子光谱线照射到铜晶体上后铜晶体所发射出的光电子的波长: 【2.4】请通过计算说明,用氢原子从第六激发态跃迁到基态所产生的光子照射长度为的线型分子,该分子能否产生吸收光谱。若能,计算谱线的最大波长;若不能,请提出将不能变为能的思路。解:氢原子从第六激发态(n=7)跃迁到基态(n=1)所产生的光子的能量为: 而分子产生吸收光谱所需要的最低能量为: 显然,

5、但此两种能量不相等,根据量子化规则,不能产生吸收光效应。若使它产生吸收光谱,可改换光源,例如用连续光谱代替H原子光谱。此时可满足量子化条件,该共轭分子可产生吸收光谱,其吸收波长为: 【2.5】计算氢原子在和处的比值。解:氢原子基态波函数为: 该函数在r=a0和r=2a0处的比值为:而在在r=a0和r=2a0处的比值为:e27.38906 【2.6】计算氢原子的1s电子出现在的球形界面内的概率。解:根据波函数、概率密度和电子的概率分布等概念的物理意义,氢原子的1s电子出现在r=100pm的球形界面内的概率为: 那么,氢原子的1s电子出现在r=100pm的球形界面之外的概率为1-0.728=0.2

6、72。【2.7】计算氢原子的积分:,作出图,求P(r)=0.1时的r值,说明在该r值以内电子出现的概率是90%。解: 根据此式列出P(r)-r数据表:r/a000.51.01.52.02.53.03.54.0P(r)1.0000.9200.6770.4230.2380.1250.0620.0300.014根据表中数据作出P(r)-r图示于图2.7中:由图可见:时, 时, 时,即在r=2.7a0的球面之外,电子出现的概率是10%,而在r=2.7a0的球面以内,电子出现的概率是90%,即:图2.7 P(r)-r图【2.8】已知氢原子的归一化基态波函数为(a)利用量子力学基本假设求该基态的能量和角动

7、量;(b)利用维里定理求该基态的平均势能和零点能。解:(a)根据量子力学关于“本征函数、本征值和本征方程”的假设,当用Hamilton算符作用于1s时,若所得结果等于一常数乘以此1s,则该常数即氢原子的基态能量E1s。氢原子的Hamiltton算符为: 由于1s的角度部分是常数,因而与,无关: 将作用于1s,有: (r=a0)所以 =-2.1810-18J也可用进行计算,所得结果与上法结果相同。注意:此式中。将角动量平方算符作用于氢原子的1s,有: =01s所以 M2=0 |M|=0此结果是显而易见的:不含r项,而1s不含和,角动量平方当然为0,角动量也就为0。通常,在计算原子轨道能等物理量时

8、,不必一定按上述作法、只需将量子数等参数代人简单计算公式,如:即可。(b)对氢原子,故: 此即氢原子的零点能。【2.9】已知氢原子的,试回答下列问题:(a)原子轨道能E=?(b)轨道角动量|M|=?轨道磁矩|=?(c)轨道角动量M和z轴的夹角是多少度?(d)列出计算电子离核平均距离的公式(不算出具体的数值)。(e)节面的个数、位置和形状怎么样?(f)概率密度极大值的位置在何处?(g)画出径向分布示意图。解:(a)原子的轨道能:(b)轨道角动量:轨道磁矩:(c)轨道角动量和z轴的夹角:, (d)电子离核的平均距离的表达式为: (e)令,得:r=0,r=,=900节面或节点通常不包括r=0和r=,

9、故的节面只有一个,即xy平面(当然,坐标原点也包含在xy平面内)。亦可直接令函数的角度部分,求得=900。(f)几率密度为: 由式可见,若r相同,则当=00或=1800时最大(亦可令,=00或=1800),以表示,即:将对r微分并使之为0,有: 解之得:r=2a0(r=0和r=舍去)又因: 所以,当=00或=1800,r=2a0时,有极大值。此极大值为: (g)根据此式列出D-r数据表:r/a001.02.03.04.05.06.0D/00.0150.0900.1690.1950.1750.134r/a07.08.09.010.011.012.0D/0.0910.0570.0340.0191.

10、0210-25.310-3按表中数据作出D-r图如下:图2.9 H原子的D-r图由图可见,氢原子的径向分布图有n-l1个极大(峰)和n-l-10个极小(节面),这符合一般径向分布图峰数和节面数的规律。其极大值在r4a0处。这与最大几率密度对应的r值不同,因为二者的物理意义不同。另外,由于径向分布函数只与n和l有关而与m无关,2px、2py和2pz的径向分布图相同。【2.10】对氢原子,所有波函数都已归一化。请对所描述的状态计算:(a)能量平均值及能量出现的概率;(b)角动量平均值及角动量出现的概率;(c)角动量在z轴上的分量的平均值及角动量z轴分量出现的概率。解:根据量子力学基本假设-态叠加原

11、理,对氢原子所描述的状态:(a)能量平均值 能量出现的概率为 (b)角动量平均值为 角动量出现的概率为 (c)角动量在z轴上的分量的平均值为 角动量z轴分量h/出现的概率为0。【2.11】作氢原子图及图,证明极大值在处,说明两图形不同的原因。解:H原子的 分析和随r的变化规律,估计r的变化范围及特殊值,选取合适的r值,计算出和列于下表:r/a00*0.100.200.350.500.700.901.101.301.000.820.670.490.370.250.170.110.0700.030.110.240.370.480.540.540.50r/a01.602.002.302.503.00

12、3.504.004.505.000.040.020.010.0070.0030.0010.001-0.420.290.210.170.090.040.020.010.005*从物理图象上来说,r只能接近于0。根据表中数据作图及图如下:图2.11 图和D1s-r图【2.12】试在直角坐标系中画出氢原子的5种3d轨道的轮廓图,比较这些轨道在空间的分布,正、负号,节面及对称性。解:5种3d轨道的轮廓图如图2.12所示。它们定性地反映了H原子3d轨道的下述性质:(1)轨道在空间的分布:的两个极大值分别在z轴的正、负方向上距核等距离处,另一类极大值则在平面,以核为心的圆周上。其余4个3d轨道彼此形状相同,但空间取向不同。其中分别沿轴和轴的正、负方向伸展,,和的极大值(各有4个)夹在相应的两坐标之间。例如,的4个极大值(若以极坐标表示)分别在,;,;,和,方向上。图2.12 3d轨道轮廓图 (2)轨道的节面:有两个锥形节面(),其顶点在原子核上,锥角约。另外4个3d轨道各有两个平面型节面,将4个瓣分开。但节面的空间取向不同:的节面分别为平面()和平面();的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号