八年级数学下册知识点总结(比较全).doc

上传人:工**** 文档编号:546863573 上传时间:2024-01-18 格式:DOC 页数:11 大小:240KB
返回 下载 相关 举报
八年级数学下册知识点总结(比较全).doc_第1页
第1页 / 共11页
八年级数学下册知识点总结(比较全).doc_第2页
第2页 / 共11页
八年级数学下册知识点总结(比较全).doc_第3页
第3页 / 共11页
八年级数学下册知识点总结(比较全).doc_第4页
第4页 / 共11页
八年级数学下册知识点总结(比较全).doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《八年级数学下册知识点总结(比较全).doc》由会员分享,可在线阅读,更多相关《八年级数学下册知识点总结(比较全).doc(11页珍藏版)》请在金锄头文库上搜索。

1、 初二数学下知识点总结函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示

2、法叫做列表法。(3)图像法:用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线。3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函

3、数的图像是经过原点(0,0)的直线。(如下图)4. 正比例函数的性质一般地,正比例函数有下列性质:(1)当k0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0 y 0 x 图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。四边形 1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角

4、和等于360.2多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180;(2)任意多边形的外角和等于360.3平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6. 矩形的判定:四边形ABCD是矩形. 7菱形的性质:因为ABCD是菱形8菱形的判定:四边形四边形ABCD是菱形.9正方形的性质:因为ABCD是正方形 (1) (2)(3) 10正方形的判定:四边形ABCD是正方形. (3)ABCD是矩形又AD=AB 四边形ABCD是正方形11等腰梯形的性质:因为ABCD是等腰梯形 12等腰梯形的判定:四边形ABCD是等腰梯形 (3)AB

5、CD是梯形且ADBCAC=BDABCD四边形是等腰梯形 14三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式

6、: 1S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2S平行四边形 =ah. a为平行四边形的边,h为a上的高)3S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)四 常识:1若n是多边形的边数,则对角线条数公式是:.2规则图形折叠一般“出一对全等,一对相似”.3如图:平行四边形、矩形、菱形、正方形的从属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.5梯形中常见的辅

7、助线:平移与旋转旋转1. 旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。2. 旋转的性质: 旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。中心对称1. 中心对称的定义: 如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。2. 中心对称图形的定义: 如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。3. 中心对称的性质: 在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。轴对称1. 轴对称的定义: 如果一个图形沿一条直线折叠后,直线两旁的部分能够

8、互相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。2. 轴对称图形的性质: 角的平分线上的点到这个角的两边的距离相等。 线段垂直平分线上的点到这条线段两个端点的距离相等。 等腰三角形的“三线合一”。3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。图形变换图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。方差与频数分布数据的波动知识框架图 极差 方差 用计算器计算 标准差 比较事物的有关性质方差与频数分布 用样本估计总体的有关特征数据的分布 频数 频率 频数分布表 频数分布图数据的波动一、极差1、一组数据中的最大值减去最小值所得的差,叫做这组数据的极差

9、;2、极差=数据中的最大值数据中的最小值。二、方差1、在一组数据中,各数据与他们的平均数的差的平方的平均数,叫做这组数据的方差,常用来表示,即:2、方差的三种公式:基本公式:化简公式: 化简公式的变形公式:3、设化简后的新数据组的方差为设的方差为(其中),则;4、方差的作用:用于表述一组数据波动的大小,方差越小,该数据波动越小,越稳定。三、标准差1、方差的算数平方根叫做这组数据的标准差,即:;2、标准差用于描述一组数据波动的大小;3、标准差的单位与原数据的单位相同。四、方差与标准差的关系1、;2、与的作用相同、单位不同。五、频数分布与频数分布图1、数据的分组整理组限、组距和组数:把一套数据分成

10、若干个小组,累计各小组的数据个数。期中每个分数段是一个“组区间”,分数段两端的数值是“组限”,分数段的最大值与最小值的差是“组距”,分数段的个数是组数”.2、频数、频率与频数分布表、频数分布图每个小组的数据的个称为这组数据的频数;频率:每个小组的频数与数据总个数的比值称为这组的频率;频率的计算公式:每组的频率=这组的频数/数据的总个数各小组的频数之和等于数据总数;各小组的频数之和等于1.二次根式1二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则 不是二次根式;(2)是一个重要的非负数,即; 0.2重要公式:(1),(2) ;注意使用.3积的算术平方根:,积的算术平方根等于积

11、中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4二次根式的乘法法则: .5二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7二次根式的除法法则:(1);(2);(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8常用分母有理化因式: , ,它们也叫互为有理化因式.9最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式, 被开方数的因数

12、是整数,因式是整式, 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.勾股定理勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 电子/通信 > 考试/面试试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号