DH6505A数字电表原理及万用表设计

上传人:cn****1 文档编号:546400893 上传时间:2022-12-18 格式:DOC 页数:25 大小:1.78MB
返回 下载 相关 举报
DH6505A数字电表原理及万用表设计_第1页
第1页 / 共25页
DH6505A数字电表原理及万用表设计_第2页
第2页 / 共25页
DH6505A数字电表原理及万用表设计_第3页
第3页 / 共25页
DH6505A数字电表原理及万用表设计_第4页
第4页 / 共25页
DH6505A数字电表原理及万用表设计_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《DH6505A数字电表原理及万用表设计》由会员分享,可在线阅读,更多相关《DH6505A数字电表原理及万用表设计(25页珍藏版)》请在金锄头文库上搜索。

1、.DH6505A数字电表原理及万用表设计摘要:数字电表以它显示直观、准确度高、分辨率强、功能完善、性能稳定、体积小易于携带等特点在科学研究、工业现场和生产生活中得到了广泛应用。数字电表工作原理简单,完全可以让同学们理解并利用这一工具来设计对电流、电压、电阻、压力、温度等物理量的测量,从而提高大家的动手能力和解决问题能力。关键字:数字电表电压电流电阻转化器校准作者:李嫣然学号:1143023035单位:四川大学,制造科学与工程学院,工业设计,2011级一前言近年来,电子技术的发展日新月异,并广泛应用于各个领域。“电表的改装”是普物电学实验的一个传统题目,长期都以指针式电表为对象,涉及的原理和方法

2、与学生中学知识重复多,而与现代技术相比显得落后【1】学习并熟知数字电表原理,并进行万用表的设计,有助于学生了深入了解电路知识,发展动手能力及进行创新思维,对电子技术发面有深入理解,对今后的工作有长足帮助。二实验原理。一、数字电表原理1、双积分模数转换器(ICL7107)的基本工作原理双积分模数转换电路的原理比较简单,当输入电压为Vx时,在一定时间T1内对电量为零的电容器C进行恒流(电流大小与待测电压Vx成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q与被测电压Vx成正比;然后让电容器恒流放电(电流大小与参考电压Vref成正比),这样电容器两极之间

3、的电量将线性减小,直到T2时刻减小为零。所以,可以得出T2也与Vx成正比。如果用计数器在T2开始时刻对时钟脉冲进行计数,结束时刻停止计数,得到计数值N2,则N2与Vx成正比。2、ICL7107双积分模数转换器引脚功能、外围元件参数的选择图3ICL7107芯片引脚图图4ICL7107和外围器件连接图ICL7107芯片的引脚图如图3所示,它与外围器件的连接图如图4所示。图4中它和数码管相连的脚以及电源脚是固定的,所以不加详述。芯片的第32脚为模拟公共端,称为COM端;第36脚Vr+和35脚Vr-为参考电压正负输入端;第31脚IN+和30脚IN-为测量电压正负输入端;Cint和Rint分别为积分电容

4、和积分电阻,Caz为自动调零电容,它们与芯片的27、28和29相连,用示波器接在第27脚可以观测到前面所述的电容充放电过程,该脚对应实验仪上示波器接口Vint;电阻R1和C1与芯片内部电路组合提供时钟脉冲振荡源,从40脚可以用示波器测量出该振荡波形,时钟频率的快慢决定了芯片的转换时间(因为测量周期总保持4000个Tcp不变)以及测量的精度。下面我们来分析一下这些参数的具体作用:Rint为积分电阻,它是由满量程输入电压和用来对积分电容充电的内部缓冲放大器的输出电流来定义的,对于ICL7107,充电电流的常规值为Iint=4uA,则Rint=满量程/4uA。所以在满量程为200mV,即参考电压Vr

5、ef=0.1V时,Rint=50K,实际选择47K电阻;在满量程为2V,即参考电压Vref=1V时,Rint=500K,实际选择470K电阻。Cint=T1*Iint/Vint,一般为了减小测量时工频50HZ干扰,T1时间通常选为0.1S,具体下面再分析,这样又由于积分电压的最大值Vint=2V,所以:Cint=0.2uF,实际应用中选取0.22uF。对于ICL7107,38脚输入的振荡频率为:f0=1/(2.2*R1*C1),而模数转换的计数脉冲频率是f0的4倍,即Tcp=1/(4*f0),所以测量周期T=4000*Tcp=1000/f0,积分时间(采样时间)T1=1000*Tcp=250/

6、fo。所以fo的大小直接影响转换时间的快慢,频率过快或过慢都会影响测量精度和线性度。一般情况下,为了提高在测量过程中抗50HZ工频干扰的能力,应使A/D转换的积分时间选择为50HZ工频周期的整数倍,即T1=n*20ms,考虑到线性度和测试效果,我们取T1=0.1m(n=5),这样T=0.4S,f0=40kHZ,A/D转换速度为2.5次/秒。由T1=0.1=250/f0,若取C1=100pF,则R1112.5K。3、用ICL7107A/D转换器进行常见物理参量的测量图5图6(1)直流电压测量的实现(直流电压表):当参考电压Vref=100mV时,Rint=47K。此时采用分压法实现测量02V的直

7、流电压,电路图见图5。:直接使参考电压Vref=1V,Rint=470K来测量02V的直流电压,电路图如图6。(2)直流电流测量的实现(直流电流表)直流电流的测量通常有两种方法,第一种为欧姆压降法,如图7所示,即让被测电流流过一定值电阻Ri,然后用200mV的电压表测量此定值电阻上的压降Ri*Is(在Vref=100mV时,保证Ri*Is200mV就行),由于对被测电路接入了电阻,因而此测量方法会对原电路有影响,测量电流变成Is=R0*Is/(R0+Ri),所以被测电路的内阻越大,误差将越小。第二种方法是由运算放大器组成的I-V变换电路来进行电流的测量,此电路对被测电路的无影响,但是由于运放自

8、身参数的限制,因此只能够用在对小电流的测量电路中,所以在这里就不再详述。图7(3)电阻值测量的实现(欧姆表):当参考电压选择在100mV时,此时选择Rint=47K,测试的接线图如图8所示,图中Dw是提供测试基准电压,而Rt是正温度系数(PTC)热敏电阻,既可以使参考电压低于100mV,同时也可以防止误测高电压时损坏转换芯片,所以必需满足Rx=0时,Vr100mV。由前面所讲述的7107的工作原理,存在:Vr=(Vr+)(Vr-)=Vd*Rs/(Rs+Rx+Rt)(6)IN=(IN+)(IN-)=Vd*Rx/(Rs+Rx+Rt)(7)由前述理论N2/N1=IN/Vr有:Rx=(N2/N1)*R

9、s(8)所以从上式可以得出电阻的测量范围始终是02Rs。:当参考电压选择在1V时,此时选择Rint=470K,测试电路可以用图9实现,此电路仅供有兴趣的同学参考,因为它不带保护电路,所以必需保证Vr1V。在进行多量程实验时(万用表设计实验),为了设计方便,我们的参考电压都将选择为100mV,除了比例法测量电阻我们使Rint=470K和在进行二极管正向导通压降测量时也使Rint=470K并且加上1V的参考电压。图8图9二、数字万用表设计常用万用表需要对交直流电压、交直流电流、电阻、三极管和二极管正向压降的测量等,图10为万用表测量基本原理图。下面我们主要讲讲提到的几种参数的测量:图10数字万用表

10、基本原理图本实验使用的DH6505型数字电表原理及万用表设计实验仪,它的核心是由双积分式模数A/D转换译码驱动集成芯片ICL7107和外围元件、LED数码管构成。为了同学们能更好的理解其工作原理,我们在仪器中预留了8个输入端,包括2个测量电压输入端(IN+、IN-)、2个基准电压输入端(Vr+、Vr-)、3个小数点驱动输入端(dp1、dp2和dp3)以及模拟公共端(COM)。1、直流电压量程扩展测量在前面所述的直流电压表前面加一级分压电路(分压器),可以扩展直流电压测量的量程。如图11所示,电压表的量程Uo为200,即前面所讲的参考电压选择100mV时所组成的直流电压表,为其内阻(如10),、

11、为分压电阻,Ui为扩展后的量程。图11分压电路原理图12多量程分压器原理由于rr2,所以分压比为扩展后的量程为多量程分压器原理电路见图12,无档量程的分压比分别为1、0.1、0.01、0.001和0.0001,对应的量程分别为200、2、20、200和2000。采用图12的分压电路(见实验仪中的分压器b)虽然可以扩展电压表的量程,但在小量程档明显降低了电压表的输入阻抗,这在实际应用中是行不通的。所以,实际通用数字万用表的直流电压档分压电路(见实验仪中的分图13实用分压器原理压器a)为图13所示,它能在不降低输入阻抗(大小为R/r,R=R1+R2+R3+R4+R5)的情况下,达到同样的分压效果。

12、例如:其中20档的分压比为:其余各档的分压比也可照此算出。实际设计时是根据各档的分压比和以及考虑输入阻抗要求所决定的总电阻来确定各分压电阻的。首先确定总电阻:R=R1+R2+R3+R4+R5=10M再计算2000档的分压电阻:R5=0.0001R=1K然后200V档分压电阻:R4+R5=0.001RR4=9K这样依次逐档计算R3、R2和R1。尽管上述最高量程档的理论量程是2000V,但通常的数字万用表出于耐压和安全考虑,规定最高电压量限为1000V。由于只重在掌握测量原理,所以我们不提倡大家做高电压测量实验。在转换量程时,波段转换开关可以根据档位自动调整小数点的显示。同学们可以自行设计这一实现

13、过程,只要对应的小数位dp1、dp2或dp3插孔接地就可以实现小数点的点亮。2、直流电流量程扩展测量(参考电压100mV)测量电流的原理是:根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。如图14,由于电压表内阻rR,取样电阻上的电压降为:图14电流测量原理图15多量程分流器电路若数字表头的电压量程为Uo,欲使电流档量程为Io,则该档的取样电阻(也称分流电阻)Ro=。若=200mV,则=200mA档的分流电阻为。多量程分流器原理电路见图15。图9中的分流器(见实验仪中的分流器b)在实际使用中有一个缺点,就是当换档开关接触不良时,被测电路的电压可能使数字表头过载,所以,实际

14、数字万用表的直流电流档图16实用分流器原理电路(见实验仪中的分流器a)为图16所示。图16中各档分流电阻的阻值是这样计算的:先计算最大电流档的分流电阻:同理下一档的为:这样依次可以计算出R3、R2和R1的值。图16中的FUSE是2A保险丝管,起到过流保护作用。两只反向连接且与分流电阻并联的二极管D1、D2为硅整流二极管,它们起双向限幅过压保护作用。正常测量时,输入电压小于硅二极管的正向导通压降,二极管截止,对测量毫无影响。一旦输入电压大于0.7V,二极管立即导通,两端电压被钳制在0.7V内,保护仪表不被损坏。用2A档测量时,若发现电流大于1A时,应尽量减小测量时间,以免大电流引起的较高温升而影

15、响测量精度甚至损坏电表。3、交流电压、交流电流测量(参考电压100mV)数字万用表中交流电压、电流测量电路是在直流电压、电流测量电路的基础上,在分压器或分流器之后加入了交直流转换电路,即AC-DC变换电路,具体电路图见图17。该AC-DC变换器主要由集成运算放大器、整流二极管、RC滤波器等组成,电位器RW用来调整输出电压高低,用来对交流电压档进行校准之用,使数字表头的显示值等于被测交流电压的有效值。实验仪中用图18所示的简化图代替。同直流电压档类似,出于对耐压、安全方面的考虑,交流电压最高档的量限通常限定为750(有效值)。图17交直流电压转换电路图18交直流电压转换简图4、电阻测量电路(参考电压01V)数字万用表中的电阻档采用的是比例测量法,其原理电路图见前面的图8,测量时我们拨动拨位开关K1-1,使Rint=470K,使参考电压的范围为01V。如前所述:Rx=(N2/N1)*RsN2=1000*Rx/Rs当Rx=Rs时,数字显示将为1000,若选择相应的小数点位就可以实现电阻值的显示。若构成200档,取Rs=100,小数点定在十位上,即让dp3插孔接地,当Rx变化时,显示从0.1199.9;若构成2K档,取Rs=1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号