首先是空穴的产生.doc

上传人:壹****1 文档编号:544810371 上传时间:2023-02-07 格式:DOC 页数:14 大小:221.01KB
返回 下载 相关 举报
首先是空穴的产生.doc_第1页
第1页 / 共14页
首先是空穴的产生.doc_第2页
第2页 / 共14页
首先是空穴的产生.doc_第3页
第3页 / 共14页
首先是空穴的产生.doc_第4页
第4页 / 共14页
首先是空穴的产生.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《首先是空穴的产生.doc》由会员分享,可在线阅读,更多相关《首先是空穴的产生.doc(14页珍藏版)》请在金锄头文库上搜索。

1、首先是空穴的产生。当半导体内掺入硼原子后,相当于占据了一个硅原子(锗原子)的位置,因为硼原子最外层只有3个电子,当这些电子与周围硅原子(锗原子)形成共价键的时候,自然就空出一个位置。因此,周围的硅原子(锗原子)的电子很容易就可以跑到空出的位置上,从而形成空穴。所谓空穴的移动,其实是这些电子在移动,方向相反,我觉得这一点和导体内电流方向与自由电子移动相反差不多。 其次是PN结正负电荷的产生。先要说明扩散运动和漂移运动的区别。扩散运动指的是由于浓度的差异而引起的运动;而漂移运动则是指在电场作用下载流子的运动。当在P型半导体部分区域掺入磷原子或在N型半导体部分区域掺入硼原子之后,由于扩散运动电子和空

2、穴会在交界处复合,磷原子失去电子变成正电荷,硼原子得到电子变成负电荷,形成内部电场阻止多子的扩散。 当加上正向电压(正偏)且大于0.5V时,在外电场的作用下,多子向PN结运动,负电荷得到空穴中和,正电荷得到电子中和,因而PN结变窄,扩散运动较之前又会变强。同时,因为电源不断补充电子和空穴,使得多子的运动得以持续形成电流。 当加上反向电压(反偏)时,与内部电场方向一致,多子向PN结反方向移动使PN结变宽,只有少子的漂移运动,因为数目很少,所以形成的反向电流近乎于0,可认为阻断。要注意的是,若反向电压过大,则会导致击穿。原因是电场强制性地将电子拉出变成自由电子;而且当反向电流很大时发热也会很厉害,

3、而半导体受温度影响很大,当温度升高时导电性会急剧增加。PN结 采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。PN结(PN junction)一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。在 P 型半导体中有许多带

4、正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。在PN结上外加一电压 ,如果P型一边接正极 ,N型一边接负极,电流便从P型一

5、边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导性。PN结加反向电压时 ,空间电荷区变宽 , 区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿和雪崩击穿。 PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。根据PN结的材料、掺杂分布、几何结构和偏置条件的不同

6、,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个PN结之间的相互作用可以产生放大,振荡等多种电子功能 。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在

7、二级管中广泛应用。PN结的平衡态,是指PN结内的温度均匀、稳定,没有外加电场、外加磁场、光照和辐射等外界因素的作用,宏观上达到稳定的平衡状态.PN结的工作原理PN结的形成 在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程: 因浓度差 多子的扩散运动®由杂质离子形成空间电荷区 空间电荷区形成形成内电场 内电场促使少子漂移 内电场阻止多子扩散 最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。

8、在空间电荷区,由于缺少多子,所以也称耗尽层。pn结工作原理1.2.1 PN结的形成 在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程: 因浓度差 多子的扩散运动由杂质离子形成空间电荷区 空间电荷区形成形成内电场 内电场促使少子漂移 内电场阻止多子扩散 最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。PN结形成的过程可参阅图01.06。图01.06 PN

9、结的形成过程(动画1-3)如打不开点这儿(压缩后的)1.2.2 PN结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使: PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 PN结加正向电压时的导电情况如图01.07所示。 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现

10、低阻性。图01.07 PN结加正向电压时的导电情况(动画1-4),如打不开点这儿(压缩后的) (2) PN结加反向电压时的导电情况 PN结加反向电压时的导电情况如图01.08所示。 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 PN结加正向电压时,呈现低电阻,具有较大的正向

11、扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。 图01.08 PN结加反向电压时的导电情况(动画1-5),如打不开点这儿(压缩后的) 1.2.3 PN结的电容效应 PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。 (1) 势垒电容CB 势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。 图01.09 势垒电容示意图 (2) 扩散电容CD 扩散电容是由多

12、子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过 来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图 01.10所示。 当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。 PN结及半导体基础知识2008-07-24 11:56在我们的日常生活中,经常看到或用到各种各样的物体,它们的性质是各

13、不相同的。有些物体,如钢、银、铝、铁等,具有良好的导电性能,我们称它们为导体。相反,有些物体如玻璃、橡皮和塑料等不易导电,我们称它们为绝缘休(或非导体)。还有一些物体,如锗、硅、砷化稼及大多数的金属氧化物和金属硫化物,它们既不象导体那样容易导屯,也不象绝缘体那样不易导电,而是介于导体和绝缘体之间,我们把它们叫做半导体。绝大多数半导体都是晶体,它们内部的原子都按照一定的规律排列着。因此,人们往往又把半导体材料称为晶体,这也就是晶体管名称的由来(意思是用晶体材料做的管子)。 物体的导电性能常用电阻率来表示。所谓电阻率,就是某种物体单位长度及单位截面积的体积内的电阻值。电阻率越小,越容易导电;反之,

14、电阻率越大,越难导电。 导体、绝缘体的电阻率值随温度的影响而变化很小。但温度变化时,半导体的电阻率变化却很激烈;每升高1,它的电阻率下降达百分之几到百分之几十。不仅如此,当温度较高时,整体电阻甚至下降到很小,以致变成和导体一样。 在金属或绝缘体中,如果杂质含量不超过干分之一,它的电阻率变化是微不足道的。但半导体中含有杂质时对它的影响却很大。以锗为例,只要含杂质一千万分之一,电阻率就下降到原来的十六分之一。 锗是典型的半导体元素,是制造晶体管的一种常用材料(注:当前的半导体元器件生产以硅Silicon材料为主)。现以锗为例来说明如何会在半导体内产生电流、整流性能和放大性能 。 我们知道,世界上的任何物质都是由原了构成的。原子中间都有一个原子核和者围绕原子核不停地旋转酌电子。不同元素的原子所包含的电子数目是不同的。蔗原子的原子核周围有32个电子,围绕着原子核运动。原子核带有正电荷电子带有负电荷;正电荷的数量刚好和全部电子的负电荷数量相等,所以在平时锗原子是中性的。 电子围绕原子核运动,和地球围绕太阳远行相似。在核的引力作用下,电子分成几层按完全确定的轨道运行,而且各层所能容纳的电子数日也有一定规律。如图所示:在锗原子核周围的32个电子组成四层环,围绕原子核运动。从里往外数,第一层环上有2个电子,其余依次为8、18、4个电子。凡是环上的电子数为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号