1 化学元素周期表 元素周期律 化学键.doc

上传人:cl****1 文档编号:544704143 上传时间:2022-10-27 格式:DOC 页数:7 大小:41KB
返回 下载 相关 举报
1 化学元素周期表 元素周期律 化学键.doc_第1页
第1页 / 共7页
1 化学元素周期表 元素周期律 化学键.doc_第2页
第2页 / 共7页
1 化学元素周期表 元素周期律 化学键.doc_第3页
第3页 / 共7页
1 化学元素周期表 元素周期律 化学键.doc_第4页
第4页 / 共7页
1 化学元素周期表 元素周期律 化学键.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《1 化学元素周期表 元素周期律 化学键.doc》由会员分享,可在线阅读,更多相关《1 化学元素周期表 元素周期律 化学键.doc(7页珍藏版)》请在金锄头文库上搜索。

1、1 化学元素周期表 元素周期律 化学键: 元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1ns2等。元素周期表能形象地体现

2、元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 现代化学的元素周期律是1869年俄国科学家德米特里伊万诺维奇门捷列夫(Dmitri Ivanovich Mendeleev )首先整理,他将当时已知的63种元素依原子量大小并以表的形式排列,把有相似化学性质的元素放在同一行,就是元素周期表的雏形。利用周期表,门捷列夫成功的预测当时尚未发现的元素的特性(镓、钪、

3、锗)。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序越大,X射线的频率就越高,因此他认为核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序)排列,经过多年修订后才成为当代的周期表。当然还有未知元素等待我们探索 这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。编辑本段元素周期表的记忆 先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素,只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了。 元素周期表中元素及其化合物的递变性规律 1 原子半径 (1)除第1周期外,其他

4、周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 2 元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同 (3) 所有单质都显零价 3 单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减; (2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增 4 元素的金属性与非金属性 (1)同一周期的元素电子层数相同。因此

5、随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增; (2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。 5 最高价氧化物和水化物的酸碱性 元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。 6 非金属气态氢化物 元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。 7 单质的氧化性、还原性 一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧

6、化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。编辑本段推断元素位置的规律 判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的序数等于最外层电子数。 阴阳离子的半径大小辨别规律 由于阴离子是电子最外层得到了电子 而阳离子是失去了电子 所以, 总的说来 (1) 阳离子半径原子半径 (3) 阴离子半径阳离子半径 (4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。 以上不适合用于稀有气体! 化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。 例如,在水分子H2O

7、中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称

8、为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。 1、离子键1是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。 化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来

9、说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 1、共价键的形成是成键电子的原子轨道发生重叠,并且

10、要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不

11、稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物2。化学能与热能 化学能与电能 反应速率及限度:用眼睛不能直接观察到反应中的热量变化,那么,你将采取哪些简单易行的办法 化学反应中的能量变化经常表现为热量的变化,有的放热,有的吸热。 1、中和反应都是放热反应。 2、三个反应的化学方程式虽然不同,反应物也不同,但本质是相同的,都是氢离 子与氢氧根离子反应生成水的反应,属于中和反应。由于三个反应中氢离子与氢氧根离子的量都相等,生成水的量也相等,所以放出的热量也相等。 3、中和热:酸与碱发生中和反应生成1mol水所释放的热量称为中和热。 4、要精确地测定反应中的能量变化,一是要注重“量的

12、问题”,二是要最大限度地 减小实验误差。 化学反应的本质是反应物中化学键的断裂和生成物中化学键的形成。化学键是物质内部微粒之间强烈的相互作用,断开反应物中的化学键需要吸收能量,形成生成物中的化学键要放出能量。氢气和氯气反应的本质是在一定的条件下,氢气分子和氯气分子中的H-H键和Cl-Cl键断开,氢原子和氯原子通过形成H-Cl键而结合成HCl分子。1molH2中含有1molH-H键,1mol Cl2中含有1mol Cl-Cl键,在25和101kPa的条件下,断开1molH-H键要吸收436kJ的能量,断开1mol Cl-Cl键要吸收242 kJ的能量,而形成1molHCl分子中的H-Cl键会放出

13、431 kJ的能量。这样,由于破坏旧键吸收的能量少于形成新键放出的能量,根据“能量守恒定律”,多余的能量就会以热量的形式释放出来。 归纳小结 1、 化学键的断裂和形成是化学反应中能量变化的主要原因。 2、 能量是守恒的。 补充练习 1、下列反应中属吸热反应的是 ( ) A 镁与盐酸反应放出氢气 B 氢氧化钠与盐酸的反应 C 硫在空气或氧气中燃烧 D Ba(OH)28H2O与NH4Cl反应 2、下列说法不正确的是 ( ) A 化学反应除了生成新物质外,还伴随着能量的变化 B 放热反应不需要加热即可发生 C 需要加热条件的化学反应都是吸热反应 D 1mol硫酸与足量氢氧化钠发生中和反应生成水所释放

14、的热量称为中和热。 3、 城市使用的燃料,现大多为煤气、液化石油气。煤气的主要成分是CO、H2的混合气体,它由煤炭与水蒸气在高温下反应制得,故又称水煤气。试回答: (1) 写出制取水煤气的主要化学方程式,该反应是反应(填吸热、放热)。 (2) 设液化石油气的主要成分为丙烷(C3H8 ),其充分燃烧后产物为CO2和 H2O,试比较完全燃烧等质量的C3H8及CO所需氧气的质量比。 4、 比较完全燃烧同体积下列气体需要的空气体积的大小: 天然气(以甲烷计)、石油液化气(以丁烷C4H10计)、水煤气(以CO、H2体积比1:1计) 5、 两位同学讨论放热和吸热反应。甲说加热后才能发生的化学反应是吸热反应

15、,乙说 反应中要持续加热才能进行的反应是吸热反应。你认为他们的说法正确吗?为什么? 答案:1.D2.BC3.(1)C+H2O CO+H2 吸热 (2) 70:11 4.石油液化气天然气水煤气5.略 第一节 化学能与热能 第2课时 教学目标: 1、能从化学键的角度理解化学反应中能量变化的主要原因,初步学会热化学方程式的书写。 2、能从微观的角度来解释宏观化学现象,进一步发展想象能力。 2、 通过化学能与热能的相互转变,理解“能量守恒定律”,初步建立起科学的能量观, 加深对化学在解决能源问题中重要作用的认识。 重点难点: 1.化学能与热能的内在联系及相互转变。 2.从本质上理解化学反应中能量的变化,从而建立起科学的能量变化观。 总结 化学反应伴随能量变化是化学反应的一大特征。我们可以利用化学能与热能及其它 能量的相互转变为人类的生产、生活及科学研究服务。化学在能源的开发、利用及解决 日益严重的全球能源危机中必将起带越来越重要的作用,同学们平时可以通过各种渠道来关心、了解这方面的进展,从而深切体会化学的实用性和创造性。 补充练习: 1、下列说法不正确的是 ( ) A 化学

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号