《第二节 气焊气割火焰及工艺参数的选择.doc》由会员分享,可在线阅读,更多相关《第二节 气焊气割火焰及工艺参数的选择.doc(7页珍藏版)》请在金锄头文库上搜索。
1、第二节 气焊气割火焰及工艺参数的选择一、气焊气割火陷气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,体积要小,焰芯要直,热量要集中;还应要求焊接火焰具有保护性,以防止空气中的氧、氮对熔化金属的氧化及污染。(一)焊接切割的火焰分类气焊气割的气体火焰包括氧乙炔焰、氢氧焰及液化石油气体丙烷(C3H8)含量占5080,此外还有丁烷(C4H10)、丁烯(C4H8)等燃烧的火焰。乙炔与氧混合燃烧形成的火焰,称为氧乙炔焰。氧乙炔焰具有很高的温度(约3200),加
2、热集中,因此,是气焊气割中主要采用的火焰。氢与氧混合燃烧形成的火焰,称为氢氧焰。氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。液化石油气燃烧的温度比氧乙炔火焰要低(丙烷在氧气中燃烧温度为20002850)。液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快2030。液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。国外还有采用乙炔与液化石油气体混合,作为焊接气源
3、。乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。上述的反应释放出热量,即乙炔在氧气中燃烧的过程是一个放热的过程。氧乙炔火焰根据氧和乙炔混合比的不同,可分为中性焰、碳化焰和氧化焰三种类型,其构造和形状如图22所示。(二)中性焰中性焰是氧与乙炔体积的比值(O2C2H2)为1112的混合气燃烧形成的气体火焰,中性焰在第一燃烧阶段既无过剩的氧又无游离的
4、碳。当氧与丙烷容积的比值(O2C3H8)为35时,也可得到中性焰。中性焰有三个显著区别的区域,分别为焰芯、内焰和外焰,如图22(a)所示。图2-2 氧乙炔焰的构造和形状1焰芯 2内焰 3外焰1焰芯 中性焰的焰芯呈尖锥形,色白而明亮,轮廓清楚。焰芯由氧气和乙炔组成,焰芯外表分布有一层由乙炔分解所生成的碳素微粒,由于炽热的碳粒发出明亮的白光,因而有明亮而清楚的轮廓。在焰芯内部进行着第一阶段的燃烧。焰芯虽然很亮,但温度较低(8001200),这是由于乙炔分解而吸收了部分热量的缘故。2内焰 内焰主要由乙炔的不完全燃烧产物,即来自焰芯的碳和氢气与氧气燃烧的生成物一氧化碳和氢气所组成。内焰位于碳素微粒层外
5、面,呈蓝白色,有深蓝色线条。内焰处在焰芯前24mm部位,燃烧量激烈,温度最高,可达31003150。气焊时,一般就利用这个温度区域进行焊接,因而称为焊接区。由于内焰中的一氧化碳(CO)和氢气(H2)能起还原作用,所以焊接碳钢时都在内焰进行,将工件的焊接部位放在距焰芯尖端24mm处。内焰中的气体中一氧化碳的含量占6066,氢气的含量占3034,由于对许多金属的氧化物具有还原作用,所以焊接区又称为还原区。3外焰 处在内焰的外部,外焰的颜色从里向外由淡紫色变为橙黄色。在外焰,来自内焰燃烧生成的一氧化碳和氢气与空气中的氧充分燃烧,即进行第二阶段的燃烧。外焰燃烧的生成物是二氧化碳和水。外焰温度为1200
6、2500。由于二气化碳(CO2)和水(H2O)在高温时容易分解,所以外焰具有氧化性。中性焰应用最广泛,一般用于焊接碳钢、紫铜和低合金钢等。中性焰的温度是沿着火焰轴线而变化的,如图23所示。中性焰温度最高处在距离焰芯末端24mm的内焰的范围内,此处温度可达3150,离此处越远,火焰温度越低。图2-3 中性焰的温度分布情况此外,火焰在横断面上的温度是不同的,断面中心温度最高,越向边缘,温度就越低。由于中性焰的焰芯和外焰温度较低,而且内焰具有还原性,内焰不但温度最高还可以改善焊缝金属的性能,所以,采用中性焰焊接切割大多数的金属及其合金时,都利用内焰。(三)碳化焰碳化焰是氧与乙炔的体积的比值(O2C2
7、H2)小于11时的混合气燃烧形成的气体火焰,因为乙炔有过剩量,所以燃烧不完全。碳化焰中含有游离碳,具有较强的还原作用和一定的渗碳作用。碳化焰可分为焰芯、内焰和外焰三部分,如图22(b)所示。碳化焰的整个火焰比中性焰长而柔软,而且随着乙炔的供给量增多,碳化焰也就变得越长、越柔软,其挺直度就越差。当乙炔的过剩量很大时,由于缺乏使乙炔完全燃烧所需要的氧气,火焰开始冒黑烟。碳化焰的焰芯较长,呈蓝白色,由一氧化碳(CO)、氢气(H2)和碳素微粒组成。碳化焰的外焰特别长,呈橘红色,由水蒸汽、二氧化碳、氧气、氢气和碳素微粒组成。碳化焰的温度为27003000。由于在碳化焰中有过剩的乙炔,它可以分解为氢气和碳
8、,在焊接碳钢时,火焰中游离状态的碳会渗到熔池中去,增高焊缝的含碳量,使焊缝金属的强度提高而使其塑性降低。此外,过多的氢会进入熔池,促使焊缝产生气孔和裂纹。因而碳化焰不能用于焊接低碳钢及低合金钢。但轻微的碳化焰应用较广,可用于焊接高碳钢、中合金钢、高合金钢、铸铁、铝和铝合金等材料。(四)氧化焰氧化焰是氧与乙炔的体积的比值(O2C2H2)大子12时的混合气燃烧形成的气体火焰,氧化焰中有过剩的氧,在尖形焰芯外面形成了一个有氧化性的富氧区,其构造和形状如图22(c)所示。氧化焰由于火焰中含氧较多,氧化反应剧烈,使焰芯、内焰、外焰都缩短,内焰很短,几乎看不到。氧化焰的焰芯呈淡紫蓝色,轮廓不明显;外焰呈蓝
9、色,火焰挺直,燃烧时发出急剧的“嘶嘶”声。氧化焰的长度取决于氧气的压力和火焰中氧气的比例,氧气的比例越大,则整个火焰就越短,噪声也就越大。氧化焰的温度可达31003400。由于氧气的供应量较多,使整个火焰具有氧化性。如果焊接一般碳钢时,采用氧化焰就会造成熔化金属的氧化和合金元素的烧损,使焊缝金属氧化物和气孔增多并增强熔池的沸腾现象,从而较大地降低焊接质量。所以,一般材料的焊接,绝不能采用氧化焰。但在焊接黄铜和锡青铜时,利用轻微的氧化焰的氧化性,生成的氧化物薄膜覆盖在熔池表面,可以阻止锌、锡的蒸发。由于氧化焰的温度很高,在火焰加热时为了提高效率,常使用氧化焰。气割时,通常使用氧化焰。(五)各种火
10、焰的适用范围以上叙述的中性焰、碳化焰、氧化焰,因其性质不同,适用于焊接不同的材料。氧与乙炔不同体积比值(O2C2H2)对焊接质量关系很大。各种金属材料气焊时火焰种类的选择详见表21。表21 各种金属材料气焊火焰的选择焊件材料应用火焰焊件材料应用火焰低碳钢中性焰或轻微碳化焰铬镍不锈钢中性焰或轻微碳化焰中碳钢中性焰或轻微碳化焰紫铜中性焰低合金钢中性焰锡 青 铜轻微氧化焰高碳钢轻微碳化焰黄铜氧化焰灰铸铁碳化焰或轻微碳化焰铝及其合金中性焰或轻微碳化焰高速钢碳化焰铅、锡中性焰或轻微碳化焰锰 钢轻微氧化焰蒙乃尔合金碳化焰镀锌铁皮轻微碳化焰镍碳化焰或轻微碳化焰铬不锈钢中性焰或轻微碳化焰硬质合金碳化焰二、气焊
11、与气割主要工艺参数(一)气焊主要工艺参数气焊的焊接工艺参数包括焊丝的牌号和直径、熔剂、火焰种类、火焰能率、焊炬型号和焊嘴的号码、焊嘴倾角和焊接速度等。由于焊件的材质、气焊的工作条件、焊件的形状尺寸和焊接位置、气焊工的操作习惯和气焊设备等的不同,所选用的气焊焊接工艺参数不尽相同。下面对一般的气焊工艺参数(即焊接规范)及其对焊接质量的影响分别说明如下:1焊丝直径的选择焊丝的直径应根据焊件的厚度、坡口的形式、焊缝位置、火焰能率等因素确定。在火焰能率一定时,即焊丝熔化速度在确定的情况下,如果焊丝过细,则焊接时往往在焊件尚未熔化时焊丝已熔化下滴,这样,容易造成熔合不良和焊波高低不平、焊缝宽窄不一等缺陷;
12、如果焊丝过粗,则熔化焊丝所需要的加热时间就会延长,同时增大了对焊件的加热范围,使工件焊接热影响区增大,容易造成组织过热,降低焊接接头的质量。焊丝直径常根据焊件厚度初步选择,试焊后再调整确定。碳钢气焊时焊丝直径的选择可参照表22。表2-2 焊件厚度与焊丝直径的关系(mm)工件厚度102020303050501001015焊丝直径1020或不用焊丝2030304030504060在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。2火焰性质的选择一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳
13、及还原气氛时,应选用碳化焰;当母材含有低沸点元素如锡(Sn)、锌(Zn)等时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。总之,火焰性质选择应根据焊接材料的种类和性能。由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。不同金属材料的气焊所采用焊接火焰的性质参照表21。3火焰能率的选择火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为Lh。火焰能率的物理意义是单位时间内可燃气体所提供的能量。火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。焊嘴号越大火焰能率也越大。所以火焰能率
14、的选择实际上是确定焊炬的型号和焊嘴的号码。火焰能率的大小主要取决于氧、乙炔混合气体中,氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。平焊缝可比其它位置焊缝选用稍大的火焰能率。在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。4焊嘴倾斜角的选择焊嘴
15、的倾斜角是指焊嘴中心线与焊件平面之间的夹角。详见图24。焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图24。一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。图2-4 焊嘴倾斜角与焊件厚度的关系焊嘴的倾斜角度在气焊的过程中还应根据施焊情况进行变化。如在焊接刚开始时,为了迅速形成熔池,采用焊嘴的倾斜角度为8090;当焊接结束时,为了更好地填满弧坑和避免焊穿或使焊缝收尾处过热,应将焊嘴适当提高