发电机、电动机的清洗维护.doc

上传人:pu****.1 文档编号:544631728 上传时间:2023-08-13 格式:DOC 页数:31 大小:349KB
返回 下载 相关 举报
发电机、电动机的清洗维护.doc_第1页
第1页 / 共31页
发电机、电动机的清洗维护.doc_第2页
第2页 / 共31页
发电机、电动机的清洗维护.doc_第3页
第3页 / 共31页
发电机、电动机的清洗维护.doc_第4页
第4页 / 共31页
发电机、电动机的清洗维护.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《发电机、电动机的清洗维护.doc》由会员分享,可在线阅读,更多相关《发电机、电动机的清洗维护.doc(31页珍藏版)》请在金锄头文库上搜索。

1、发电机、电动机的清洗维护 一、发电机、电动机的清洗维护的意义对按严格标准设计、制造和设置的电机而言,应该是很安全的。但为什么在电气设备的故障、火灾中,有1/5是由于电机的原因而导致的呢?这是因为电机的日常维护不够好的缘故,而由于种种原因导致电机打火,点燃了电机周围的可燃物,而酿成火灾引起电机火灾的原因通常有以下几种: (1)、由于线圈被油垢等污物侵蚀、覆盖,造成线圈老化和过热; (2)、风冷式电机通风部位被污垢堵塞; (3)、电机过载运行而引起的电机线圈过热; (4)、安装和润滑不良而使轴承过热; (5)、电刷打火引燃电机上的污物; (6)、接点松动而打火引燃电机上的污物;显然,若消除这些原因

2、,将会大大降低火灾的发生率,因此开发了“涤特纯-/”,因为: 1)、干净的电机上面没有污物和易燃物,可被充分冷却不会过热,所以经常清除污染线圈的油垢等非常必要,若不然油垢长期覆盖在线圈上,加速绝缘材料的老化进而造成绝缘破坏引起匝间漏电和火花飞溅,容易引起火灾。 使用 “涤特纯-/”可以除去线圈上的油垢等污物,使电机清洁,同时对电机的绝缘材料和其他电机零件及耐油的橡胶、塑料都可以安全的使用;还可以提高电机的绝缘程度,若使用“普特安”防潮绝缘保护剂,效果会更好。 2)、若在电机冷却通风的空隙中有污物,必然使通风变差,有可能引起电机过热,这将会由于以下三方面的原因而引起的火灾:A、污物逐渐被烤焦,炭

3、化而被引燃;B、由于热量的积蓄,线圈的绝缘材料被引燃;C、线圈的绝缘材料由于过热而加速老化产生漏电,火花,因此,若在电机运行过程中采用“涤特纯-/”清洗,电机内部的污物被清除,冷却效果将大大改善。 3)、由于过载导致过热,致使线圈绝缘材料和油垢等污物被引火燃烧。 4)、轴承发热是由于安装不良、机油、润滑油不足而发生的。由于不能满足正常运行要求或电机被卡住,造成电机起动电流过大而使线圈突然燃烧。 5)、在电刷产生火花时,必须换上新的,必要时应对电机整流子的工作进行修整和磨光处理。对于电刷零件也必须进行定期的清洗,火花和碳粉会对电机的整流子造成损害,并可将易燃的线头等污物点燃。 请注意:在火花较严

4、重的情况下,不要带电使用“涤特纯-/”清洗,那样可能引起火灾。在火花不止的情况下,断电清洗是最安全的。6)、由于震动的原因会使电机的接线端子松动,定期清洗时,可很好的检查,并将松动的接线端子拧紧。传统清洗剂及清洗技术的弊端以往发电机、电动机定转子的清洗多是用“汽油、酒精”等溶剂清洗,但这些溶剂易燃不安全、而且不能彻底挥发 ,其残留还会腐蚀绝缘、当然更不能带电清洗,由于这些溶剂抗爆性能差,清洗技术只能是采用人工小心刷洗,劳动强度大、效率低且效果不佳,很多企业越来越重视清洗维护的安全性能,采用了“四氯化碳”溶剂清洗,但“四氯化碳对人体巨毒有伤害,也只能采用人工小心刷洗,劳动强度大、效率低且效果不佳

5、。我公司研制开发的“涤特纯-/”清洗剂是有机溶剂,其渗透力和去污力强都远比汽油强,清洗剂能充分挥发而对绝缘层没有伤害;而且没有汽油,酒精那样的引火危险,抗爆性能优越,无毒安全。所以采用“涤特纯-/”清洗电机定转子线圈,安全可靠,由于其没有汽油,酒精那样的引火危险,抗爆性能优越,所以不仅可以像汽油,酒精那样采用刷洗,如果采用专门研制的9308喷枪进行喷洗,还可极大的提高工效、降低劳动强度且效果卓越。二、发电机、电动机的清洗维护的步骤1、清洗主材:“涤特纯-/”、清洗枪等到达现场。2、请甲方协助做好电机解体、抽芯工作。3、共同测定定子、转子绕组对地(壳)绝缘值。4、绕组表面浮尘油污清除。5、对定子

6、及转子绕组分别系用“涤特纯-/”、充分清洗,直至彻底洗出绕组本色。6、彻底风干清洗表面,视情况决定是否喷洗“普特安”防潮绝缘保护剂7、电机外壳采用 “速可洁”表面清洗剂清洗。验收:目测、手感绕组、铁芯是否有污物,通风空是否畅通。用兆欧表测量定子、转子绕组对壳绝缘值,并对照清洗前的相应记录进行批评估。同步电机频繁损坏原因分析与改进对策原作者: 出处:【论文摘要】分析同步电动机运行中的故障征象,找出同步电动机频繁损坏的根本原因,针对这些原因提出了改进同步机励磁控制系统的对策。大型高压同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,改善电网质量,在各行各业得到广泛应用。我公司球磨机用同

7、步电动机曾在一段时期内频繁损坏,直接影响到我公司的生产和设备的安全运行。因此正确分析判断同步电机的故障原因,并提出相应对策,就成了我们的当务之急。一、事故征象我公司现有16台1300KW/6KV同步电动机。在2000年以前平均每年要出现23次电机烧损的事故。其事故主要征象为:定子绕组端部绑线崩断,电机定子绕组过热,起动绕组笼条开焊、断裂,电机起动及运行中出现异常声响,经常启动失败等现象。尤其是在1999年1月12日我公司7#同步电动机运行过程中突然放炮,造成7#同步电动机定子线圈局部严重烧坏,高压电缆接头烧损,电流互感器崩坏,由于7#同步机脱扣装置拒动,保护不能正常动作,持续大电流引起密地变电

8、所密27选线保护动作跳闸,影响到选所带其它用电设备停机。二、事故原因的基本判断分析1、电机质量分析:电机的正常使用寿命一般应在20年左右。统计我公司所损坏的同步电动机,运行寿命大多在10年以下,尤其是这台7#同步电动机大修后,投运仅4个月便出现了这次放炮烧损事故。在事故分析中,部分电气技术人员将事故的主要原因归结到电机的大修上。这种大面积的电机损害事故,将事故原因归结到电机质量上,我对此提出异议。建议将视线转移到对励磁系统的分析上;事实证明,电机修理厂在电机返修中对其重点部位进行了种种加强措施,甚至于提高了绝缘等级,但效果并不显著。损坏事故仍不断出现。2、励磁系统原因分析:针对同步电动机起动运

9、行过程中发生异常声响、电机定子绕组过热、起动绕组笼条开焊、断裂等诸多现象,在排除电机质量原因引起事故的条件下,有必要对现行的励磁系统进行合理的分析,从而找出电机频繁损坏的真正原因:励磁系统设计不合理。三、励磁系统存在的主要问题与电机故障原因的内在联系1、励磁装置起动回路设计不合理,使同步电机经常处在脉振情形下起动。原主电路为桥式半控励磁装置,其原理图如图1所示。电机在起动过程中,在转子线圈内将感应一交变电势,其正半波通过ZQ形成回路,产生+if;而其负半波则通过KQ及RF形成回路,产生-if。由于负载电路不对称,形成+if与-if电流不对称,if曲线如图2所示。电机定子电流因此也产生强烈脉振,

10、其曲线如图3。电机因而遭受到脉振转矩的强烈振动。造成整个厂房大厅内都可以听到电机起动过程发出的强烈振动声。这种声音一直持续到电机起动结束才消失。另一方面,由于装置采用的是KGLF-11型老式励磁装置模拟控制,其投励检测元件老化,检测不准确,导致投励时间变化,对电机启动造成很大影响。随着电机起动过程滑差减小,转子线圈内感应电势逐步减小,当转速达到50以上时,励磁回路感应电流负半波通路不畅,将处于时通时断,似通非通状态,形成+if与-if电流不对称,由此形成脉振转矩,造成电机产生强烈振动。有时在运行中受灭磁插件分立元件性能的影响,灭磁晶闸管KQ误导通,灭磁电阻发热烧红冒烟。它只有一个高导通电压,电

11、机起动时,特别在转子感应电压较低时,KQ不能可*导通,造成主机起动转矩不对称,使机组产生强烈振动。这正是前述的主要事故征象之一。因此,无论电机质量如何优异,在如此恶劣的条件下电机频繁起动,给电机造成的损伤是可想而知的。电机的寿命因此大打折扣。2、投励环节设计不合理,经常造成启动失败,重复启动次数大大增加。投励环节原设计为:按同步电动机转子滑差顺极性无接点投励环节工作,如图4所示。由于控制插件采用的是模拟元件,元件老化和温度漂移以及抗干扰能力弱,造成转子感应电压检测不准确。主要是由于检测感应信号的稳压管12WY和三极管3BG性能不稳定,还有对电容器5C的充放电时间不确定;在同步机进入亚同步时,该

12、投励触发时却没有发出信号,往往造成同步机启动失败。这是模拟励磁装置的通病,结果是造成同步机重复启动,从而带来对电机的损害。3、励磁装置无可*的失步保护装置,使电机运行不可*。同步电动机原投励装置采用反时限继电器“兼作失步保护”,其原理接线如图五;而电机“过负荷”与电机“失步”是完全不同的两个概念,通过对电机失步时的示波照相分析其暂态过程,现场试验及实拍电机失步的暂态波形证明:用过负荷继电器兼作失步保护,当电机失步时,不能动作,有的虽能动作,但动作延时加长,实际上起不到保护作用。如图5所示的过流继电器原理。同步电机的失步事故主要分为失励失步和带励失步两类。31、失励失步是由于励磁系统的原因,使同

13、步电动机的励磁绕组失去直流励磁。由于球磨机的同步电机过载力矩很大,导致同步电动机失去静态稳定,滑出同步。电机发生失励失步时,负载基本不变,定子电流增大1.53倍,电机声音异常,而GL型继电器主要用于起动时的电流保护,其整定值为67倍的额定值,所以GL型继电器拒动或动作时间过长。在此情况下失励失步一般不易被值班人员及时发现,待发现电机冒烟时,电机已失步了相当长时间,并已造成电机绕组或励磁装置的损坏。应当指出的是电机的失励失步,大多不当场损坏电机,出现电机冒烟后,停机常规检查,往往又查不出毛病,电机还能再投入运行。由于失步运行,在阻尼绕组中就流过超过额定电流数倍至数十倍的电流,尤其是负载较重时,由

14、于转差较大,所以流过阻尼绕组电流就更大。阻尼绕组的温升和热容量,一般是按短时工作制考虑的,由于长期流过大电流,必定会导致阻尼绕组温度过高,造成开焊、笼条断裂,甚至于阻尼绕组完全烧毁。正是在这种状况下,使得电机的寿命大为缩短。需要指出的是,电机失励失步时还会在转子回路中产生高电压,造成励磁装置主回路元件损坏,引起灭磁电阻发热,严重时甚至造成整台励磁装置烧坏。32、带励失步,是由于负载突增(如球磨机胀肚),电机在运行中短时间严重欠励磁;或电机起动过程中励磁系统过早投励等原因引起的。电机在带励失步时,励磁系统虽仍有直流励磁,但励磁电流及定子电流(包络线)强烈脉动,电机亦遭受强烈脉振,有时甚至产生电气

15、共振和机械共振。带励失步与失励失步对电机造成的危害其性质是一样的。严重时甚至出现断轴事故。由于电机和主机是同轴运行,电机的强烈脉振,同样会波及到主机损伤,如紧固螺丝断裂等。四、励磁系统改进对策我公司球磨机用同步电机损坏频繁的主要原因如上述三条,其对策主要为:1、主电路:采用无续流二极管的新型三相桥式半控整流电路(图6所示),线路简洁、可*,通过设计合理选配灭磁电阻RF,分级整定KQ的开通电压,当电机在异步驱动状态时,使KQ在较低电压下便开通,电动机具有良好的异步驱动特性,有效地消除了原励磁屏在电机异步暂态过程中所存在的脉振,满足带载起动及再整步的要求;而当电机在同步运行状态时,KQ在过电压情况下才开通,既起到保护元器件的作用,又使电机在正常同步运行时,KQ不会误导通。2、投励环节改进:电机在起动及再整步过程中,按照“准角强励磁整步”的原则设计。就物理概念而言,系指电机转速进入临界滑差(即原来所谓的“亚同步”),按照电机投励瞬间在转子回路中产生的磁场与定子绕组产生的磁场互相吸引力最大(即定子磁场的N极与投励后转子绕组产生的S极相吸,定子磁场的S

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号