《浅谈数控技术相关知识毕业论文.doc》由会员分享,可在线阅读,更多相关《浅谈数控技术相关知识毕业论文.doc(30页珍藏版)》请在金锄头文库上搜索。
1、摘 要简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。数控技术是用数字信息对机械运动和工作过程进
2、行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:1.机械制造技术;2.信息处理、加工、传输技术;3.自动控制技术;4.伺服驱动技术;5.传感器技术;6.软件技术等。关 键 词: 数控技术;应用 ;发展目 录一、绪 论2(一)数控技术的概述2(二)数控技术简介2二、数控技术的分类及关键技术3(一)数控系统的控制原理31.计算机数控系统 42.CNC系统的硬件结构 5(二)数控技术的关键技术6三、数控机床的应用 12(一)数控机床的概述 12(二)数控机床精度的选择 13 (三)数控机床故障实用诊断技
3、术及方法 14(四)数控机床的维护 17(五)数控机床分类 20四、数控技术的发展趋势 22(一)数控技术发展概况 22(二)数控技术发展趋势 23结 论27参考文献28致 谢28浅谈数控技术相关知识一、绪论(一)数控技术的概述数控技术是一种集机、电、液、光、计算机、自动控制技术为一体的知识密集型技术,它是制造业实现现代化、柔性化、集成化生产的基础,同时也是提高产品质量,提高生产率必不可少的物质手段。在发达国家中,数控机床已经普遍大量使用,而我国数控技术的应用同发达国家相比差距很大,目前我国机床的数控化率仅为1.9,而日本高达30,美国超过了40,国家规划在2010年前,使数控化率达10以上。
4、数控化率每增加一个百分点,需要5-6万台数控机床。这样算来,我国数年内将增加40-50万台数控机床,相应需要60-80万数控专业技术人才。特别是我国加入WTO后,越来越多的发达国家把制造基地转入中国,我国将成为二十一世纪的“国际制造业加工中心”,全国制造企业数控化是国家制定的一项科技战略发展目标,数控及其应用技术将成为各类加工企业的主要基本技术(二)数控技术简介数控技术,简称数控(Numerical Control)。它是利用数字化的信息对机床运动及加工过程进行控制的一种方法。用数控技术实施加工控制的机床,或者说装备了数控系统的机床称为数控(NC)机床。数控系统包括:数控装置、可编程控制器、主
5、轴驱动器及进给装置等部分。现代数控机床是机电一体化的典型产品,是新一代生产技术、计算机集成制造系统等的技术集合。现代数控机床的发展趋向是高速化、高精度化、高可靠性、多功能、复合化、智能化和开放式结构。主要发展动向是研制开发软、硬件都具有开放式结构的智能化全功能通用数控装置。数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合实力的水平。它随着信息技术、微电子技术、自动化技术和检测技术的发展而发展。数控加工中心是一种带有刀库并能自动更换刀具,对工件能够在一定的范围内进行多种加工操作数控机床。在加工中工零件的特点是:被加工零件经过一次装夹后,数控系统能控
6、制机床按不同的工序自动选择和更换刀具;自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其它辅助功能地对工件各加工面自动地进行钻孔、锪孔、铰孔、镗孔、攻螺纹、铣削等多工序加工。由于加工中心能集中地、自动地完成多种工序,避免了人为的操作误差、减少了工件装夹、测量和机床的调整时间及工件周转、搬运和存放时间,大大提高了加工效率和加工精度,所以具有良好的经济效益。加工中心按主轴在空间的位置可分为立式加工中心与卧式加工中心。二、数控技术的分类及关键技术 (一)数控系统的控制原理1.计算机数控系统 (1)CNC系统的组成与特点(2)CNC系统由硬件和软件组成,其组成框图如图2-1所示。根据上述组成框图
7、,CNC系统有如下特点: 1.灵活性对于NC系统,一旦提供了某些控制功能,就不能被改变,除非改变硬件。而CNC系统,只要改变相应的软件即可,而不要改变硬件。2.通用性在CNC系统中,硬件采用通用的模块化结构,而且易于扩展,并结合软件变化来满足数控机床的各种不同要求。接口电路由标准电路组成,给机床厂和用户带来了很大方便。这样用一种CNC系统就能满足多种数控机床的要求,当用户要求某些特殊功能时,仅仅改变某些软件即可。3.可靠性CNC系统中,零件数控加工程序在加工前一次性全部输入存储器,并经过模拟后才被调用加工,这就避免了在加工过程中由于纸带输入机的故障产生的停机现象。许多功能都由软件完成,硬件结构
8、大大简化,特别是大规模和超大规模集成电路的采用,可靠性得到很大的提高。4.数控功能多样化CNC系统利用计算机的快速处理能力,可以实现许多复杂的数控功能,如多种插补功能、动静态图形显示、数字伺服控制等。5.使用维护方便有的CNC系统含有对话编程、图形编程、自动在线编程等功能,使编程工作简单方便。编好的程序通过模拟运行,很容易检查程序是否正确。CNC系统中还含有诊断程序,使得维修十分方便。2.CNC系统的硬件结构数控系统的硬件由数控装置、输入/输出装置、驱动装置和机床电器逻辑控制装置等组成,这四部分之间通过I/O接口互连。数控装置是数控系统的核心,其软件和硬件来控制各种数控功能的实现。输入/输出装
9、置主要有键盘、纸带阅读机、软盘驱动器、通信装置、显示器等,用以控制数据的输入/输出,监控数控系统的运行,进行机床操作面板及机床机电控制/监测机构的逻辑处理和监控,并为数控装置提供机床状态和有关应答信号。机床电器逻辑控制装置接受数控装置发出的数控辅助功能控制命令,实现数控机床的顺序控制。在现代数控系统中机床电器逻辑控制装置已经被可编程序控制器(PLC)取代。驱动装置一般是以轴为单位的独立体,用以控制各轴的运动。数控装置的硬件结构按CNC装置中的印制电路板的插接方式可以分为大板结构和功能模块(小板)结构;按CNC装置硬件的制造方式,可以分为专用型结构和个人计算机式结构;按CNC装置中微处理器的个数
10、可以分为单微处理器结构和多微处理器结构。(1)大板结构和功能模板结构大板结构大板结构CNC系统的CNC装置由主电路板、位置控制板、PC板、图形控制板、附加I/O板和电源单元等组成。主电路板是大印制电路版,其它电路板是小板,插在大印制电路板上的插槽内。这种结构类似于微型计算机的结构。功能模块结构在这种结构中,整个CNC装置按功能模块化分为若干个模块,硬件和软件的设计都采用模块化设计,每一个功能模块做成尺寸相同的印制电路板,相应功能模块的控制软件也模块化。用户根据需要选用各种控制单元母板及所需功能模板,将各功能模板插入控制单元母板的槽内,就组成了自己需要的CNC系统的控制装置。常用的功能模板有CN
11、C控制板、位置控制板、PC板、存储器板、图形板和通信板等。FANUC系统15系列就采用了功能模块式结构。(2)单微处理器结构和多微处理器结构单微处理器结构在单微处理器结构中,只有一个微处理器,以集中控制、分时处理数控装置的各个任务。其它功能部件,如存储器、各种接口、位置控制器等都需要通过总线与微处理器相连。图2-2是单微处理器结构图。多微处理器结构随着数控系统功能的增加、数控机床的加工速度的提高,单微处理器数控系统已不能满足要求,因此,许多数控系统采用了多微处理器的结构。若在一个数控系统中有两个或两个以上的微处理器,每个微处理器通过数据总线或通信方式进行连接,共享系统的公用存储器与I/O接口,
12、每个微处理器分担系统的一部分工作,这就是多微处理器系统。如图2-3所示的数控系统带有4个CPU。目前使用的多微处理器系统有三种不同的结构,即主从式结构、总线式多主CPU结构和分布式结构。(二)数控技术的关键技术数控装备的高速度、高精度、高柔性和高自动化程度,向数控系统和伺服驱动系统提出了新的要求,下面主要从数控系统与伺服驱动系统方面介绍其关键技术。要实现数控设备高速化,首先要求数控系统能对由微小程序段构成的加工程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位微处理器,是提高数控系统高速处理能力的有效手段。在数控设备高速化中,提高主轴转速占有重要地位。主
13、轴高速化的手段是直接把电机与主轴连接成一体,从而可将主轴转速大大提高。采用直线电机技术来替代目前机床传动中常用的滚珠丝杠技术,在提高轮廓加工速率的同时,提高了加速度。1.除不断采用新型功能部件外,还需在以下几个方面进行深入研究: (1)高速加工动力学建模及控制高速运动下的对象已经不能用纯静态的方法处理,数控问题也不再能归结为几何问题或静力学问题。作为一个动态对象,它并不是“亦步亦趋”地跟随所施加的控制,而力图表现出它的“个性”;另一方面,所施加的控制必须充分顾及被控制对象的动态特性,才能得到预期的控制效果。因此,已经不能像传统的数控系统那样,可以将控制系统与被控制对象分开来研究和制造,而必须作
14、为一个整体来处理,研究其在高速状态下的动力学问题,以及超高速运动控制条件下光、电信号的时滞影响及其消除的问题。在高速情况下,必须研究集数控系统与控制对象为一体的整体动力学建模、基于整体动力学模型的非线性控制策略、智能化控制方法等。(2)机电特性参数的辨识、分析与控制优化高速控制的核心在于实现高加速度,为此需要使伺服机构处于最佳工作状态,从而获得系统最大运动加速度。因此,基于系统整体建模的加速度控制曲线选择、伺服机电参数的辨识优化、多轴增益的协调控制等是当前研究的热点。 (2)高速、高精插补运算和控制算法高速、高精插补是将复杂轨迹按控制规律分解成伺服控制指令。轮廓加工时,加工程序由巨量微小线段构成,高速加工除需保证微段程序连续执行外,还需根据轨迹变化及时预测各轴状态,实现高加速度运行要求。这就要求对微段程序的高速、高精插补、高速预处理,微段