教辅—--数字信号处理习题集及答案全集.doc

上传人:大米 文档编号:544519148 上传时间:2022-11-03 格式:DOC 页数:54 大小:3.03MB
返回 下载 相关 举报
教辅—--数字信号处理习题集及答案全集.doc_第1页
第1页 / 共54页
教辅—--数字信号处理习题集及答案全集.doc_第2页
第2页 / 共54页
教辅—--数字信号处理习题集及答案全集.doc_第3页
第3页 / 共54页
教辅—--数字信号处理习题集及答案全集.doc_第4页
第4页 / 共54页
教辅—--数字信号处理习题集及答案全集.doc_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《教辅—--数字信号处理习题集及答案全集.doc》由会员分享,可在线阅读,更多相关《教辅—--数字信号处理习题集及答案全集.doc(54页珍藏版)》请在金锄头文库上搜索。

1、第一章 数字信号处理概述判断说明题:1模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 ( )答:错。需要增加采样和量化两道工序。2一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。( )答:错。受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。第二章 离散时间信号与系统分析基础一、离散时间信号与系统频域分析计

2、算题:1设序列的傅氏变换为,试求序列的傅里叶变换。解: 由序列傅氏变换公式 DTFT可以得到DTFT 2计算下列各信号的傅里叶变换。 (a) (b)(c) 解:(a) (b) (c)7计算下列各信号的傅立叶变换。(1)(2)(3)【解】(1) (2)假定和的变换分别为和,则所以 (3) 第三章 离散傅立叶变换一、离散傅立叶变换定义填空题1某DFT的表达式是,则变换后数字频域上相邻两个频率样点之间的间隔是( )。解:2某序列DFT的表达式是,由此可看出,该序列的时域长度是( ),变换后数字频域上相邻两个频率样点之间隔是( )。解:N 判断说明题:3一个信号序列,如果能做序列傅氏变换对它进行分析,

3、也就能做DFT对它进行分析。 ( )解:错。如果序列是有限长的,就能做DFT对它进行分析。否则,频域采样将造成时域信号的混叠,产生失真。计算题4试求以下有限长序列的N点DFT(闭合形式表达式)(1) (2)解:(1)因为,所以(2)由,得所以5计算下列序列的N点DFT: (1) (2),解:(1), (2) , k=m或k=-m= 0, 其它6已知一个有限长序列 (1) 求它的10点离散傅里叶变换(2) 已知序列的10点离散傅立叶变换为,求序列解:(1)=1+2=1+2=1+2,(2)由可以知道,是向右循环移位2的结果,即7、已知序列:,求的N点DFT。解: = 0, 其它8、计算下列有限长序

4、列的DFT,假设长度为N。 (1) (2)解:(1) (2) 三、离散傅立叶变换性质填空题:1已知序列,序列长度,写出序列的值( )。解:2已知,则和的5点循环卷积为( )。解: 3已知则的4点循环卷积为( )。解:证明题:4试证N点序列的离散傅立叶变换满足Parseval恒等式 证: 5是一个离散傅里叶变换对,试证明离散傅里叶变换的对称性: 证明略。6长为N的有限长序列,分别为的圆周共轭偶部及奇部,也即证明:证 7若证: (1) (2)由(2),将互换,则有 (这应该是反变换公式) (用,且求和取主值区) 与(1)比较 所以8若,求证。证: 而 (为整数) 0 所以 于是 9令表示N点序列的

5、N点DFT,试证明:(a) 如果满足关系式,则。(b) 当N为偶数时,如果,则。证: (a)N为偶数: N为奇数:而中间的一项应当满足: 因此必然有 这就是说,当N为奇数时,也有。(b)当N为偶数: 当N为偶数时,为奇数,故;又由于故有10设,求证。【解】因为 根据题意 因为 所以 11证明:若为实偶对称,即,则也为实偶对称。【解】 根据题意 下面我们令进行变量代换,则 又因为为实偶对称,所以,所以 可将上式写为 所以 即证。注意:若为奇对称,即,则为纯虚数并且奇对称,证明方法同上。计算题:12已知,用圆周卷积法求和的线性卷积。解: , 因为的长度为,的长度为所以的长度为,故应求周期的圆周卷积

6、的值,即所以13序列,序列。(1)求线性卷积(2)若用基2 FFT的循环卷积法(快速卷积)来得到两个序列的线性卷积运算结果,FFT至少应取多少点? 解:(1)所以,(2)若用基2FFT的循环卷积法(快速卷积)来完成两序列的线性卷积运算,因为的长度为;所以得长度为。故FFT至少应取点。14有限长为N=100的两序列 做出示意图,并求圆周卷积及做图。解 示意图略,圆周卷积15已知是长度为N的有限长序列,现将的每两点之间补进个零值,得到一个长为的有限长序列 求:DFT与的关系。 解:因为 令 16已知是N点有限长序列,。现将长度变成点的有限长序列 试求点DFT与的关系。解:由可得 所以在一个周期内,

7、的抽样点数是倍,相当于在的每两个值之间插入个其他的数值(不一定为零),而当的整数倍时,相等。17已知是N点有限长序列,。现将的每两点之间补进个零值点,得到一个点的有限长序列 试求点DFT与的关系。解:由可得而 所以是将(周期为N)延拓次形成的,即周期为。18已知序列和它的6点离散傅立叶变换。(1)若有限长序列的6点离散傅立叶变换为,求。(2)若有限长序列的6点离散傅立叶变换为的实部,即,求。(3)若有限长序列的3点离散傅立叶变换 ,求。解:(1)由知,是向右循环移位4的结果,即 (2) 由上式得到 (3) 由于 所以 即 或 19令表示N点的序列的N点离散傅里叶变换,本身也是一个N点的序列。如

8、果计算的离散傅里叶变换得到一序列,试用求。解 因为 所以20为了说明循环卷积计算(用DFT算法),分别计算两矩形序列的卷积,如果,求 (1)两个长度为6点的6点循环卷积。 (2)两个长度为6点的12点循环卷积。【解】这是循环卷积的另一个例子。令 图3-6中,N定义为DFT长度。若,则N点DFT为 如果我们将和直接相乘,得 由此可得 这个结果绘在图3-6中。显然,由于序列是对于旋转,则乘积的和始终等于N。当然也可以把和看作是2L点循环卷积,只要给他们增补L个零即可。若我们计算增长序列的2L点循环卷积,就得到图3-7所示序列。可以看出它等于有限长序列和的线性卷积。注意如图3-7所,时 所以图3-7

9、(e)中矩形序列的DFT为() 循环卷积的性质可以表示为 考虑到DFT关系的对偶性,自然两个N点序列乘积的DFT等于他们对英的离散傅里叶变换的循环卷积。具体地说,若,则 或 21设是一个2N点序列,具有如下性质 另设,它的N点DFT为。求得2N点DFT和的关系。【答案】22已知某信号序列,试计算(1)和的循环卷积和;(2)和的线性卷积和;(3)写出利用循环卷积计算线性卷积的步骤。【答案】(1) (2) (3)略23如图表示一个5点序列。(1)试画出(2)试画出解:简答题:24试述用DFT计算离散线性卷积的方法。解:计算长度为M,N两序列的线性卷积,可将两序列补零至长度为M+N-1,而后求补零后

10、两序列的DFT,并求其乘积,最后求乘积后序列的IDFT,可得原两序列的线性卷积。25已知是两个N点实序列的DFT值,今需要从求的值,为了提高运算效率,试用一个N点IFFT运算一次完成。解:依据题意 取序列 对作N点IFFT可得序列。又根据DFT性质 由原题可知,都是实序列。再根据,可得 四、频域取样填空题:1从满足采样定理的样值信号中可以不失真地恢复出原模拟信号。采用的方法,从时域角度看是( );从频域角度看是( )。解:采样值对相应的内插函数的加权求和加低通,频域截断2由频域采样恢复时可利用内插公式,它是用( )值对( )函数加权后求和。解: 内插3频域N点采样造成时域的周期延拓,其周期是( )。解:(频域采样点数时域采样周期)简答题:4 已知有限长序列的变换为,若对在单位圆上等间隔抽样点,且,试分析此个样点序列对应的IDFT与序列的关系。解:如果 即是在单位圆上点等间隔抽样,根据频域抽样

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号