冰蓄冷中央空调系统.docx

上传人:hs****ma 文档编号:544356059 上传时间:2023-08-18 格式:DOCX 页数:10 大小:152.69KB
返回 下载 相关 举报
冰蓄冷中央空调系统.docx_第1页
第1页 / 共10页
冰蓄冷中央空调系统.docx_第2页
第2页 / 共10页
冰蓄冷中央空调系统.docx_第3页
第3页 / 共10页
冰蓄冷中央空调系统.docx_第4页
第4页 / 共10页
冰蓄冷中央空调系统.docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《冰蓄冷中央空调系统.docx》由会员分享,可在线阅读,更多相关《冰蓄冷中央空调系统.docx(10页珍藏版)》请在金锄头文库上搜索。

1、冰蓄冷中央空调系统摘 要:本文在分析了目前为解决峰谷用电量差应运而生的冰蓄冷中央空调系统,对其原理,分类,优缺点,效益等方面做了简要介绍;并在此基础上,说明了评价冰蓄冷系统的一系列指标,如冰蓄冷系统的蒸发温度,制冷率与融冰率,热损失,安全性与可靠性等;此外,介绍了国外的冰蓄冷系统的技术发展趋势及特点,另外,对于国内冰蓄冷系统发展面临的问题也做了总结以及一些可行的建议。关键词:冰蓄冷;移峰填谷;蓄能Ice-Thermal-Storage Center Air Conditioning SystemAbstract: This paper analyses the ice-thermal-stor

2、age center air conditioning system for solving the problem of the peak and valley of electricity and introduces the the principle, advantages and disadvantages, classification, benefits and so on. Furthermore, the paper also explains a series of index that evaluate the ice-thermal-storage center air

3、 conditioning system, such as the evaporation temperature, the refrigeration rate and thaw rate, the heat loss, the security and reliability and so on. In addition, it shows the technology trends and characteristics of the ice-thermal-storage center air conditioning system abroad and puts forward so

4、me suggestions of how to do in our country when we popularize the ice-thermal-storage center air conditioning system.Key words:The ice storage technology,; Peak load shaving; Energy storage引言众所周知,夏季用电紧张,时常导致拉闸限电的事情发生。到了夏季,随着空调用电的加大,让城市电力系统峰谷差急剧放大,电网负荷明显加大。中科院广州能源研究所博士冯自平称“电力紧张有很大一部分是由峰谷差造成的,峰谷差造成浪费几

5、乎是天文数字。”,在我国电力结构中,空调是造成电力负荷峰谷差的主要因素之一。综合全天的电量供应,其实电力紧张只出现在用电高峰时段,用电低谷期发电能力富裕的电量却往往因得不到有效利用而被白白消耗掉,造成巨大的能源浪费。特别在夏季高温期间,电力供需矛盾突出,重点是空调负荷呈现出“爆发性”增长,这种增长与气温密切相关。夏天电力出现缺口的时段主要集中在上午9时至11时、下午1时至3时和晚上6时30分至8时30分,夜间及凌晨为用电低谷期。在用电高峰期,由于负荷增加较大,与低谷形成峰谷差。据有关报道,去年广东空调的负荷绝对值就已超过1000万千瓦,而空调开启带来的负荷占总用电负荷已经达到35%以上。空调用

6、电不仅增加了高峰负荷,而且加大了电网的峰谷差。 我国的电力工业发展很快,96年发电装机容量已达到世界第2位,到97年底全国发电装机容量达2.5亿千瓦,2004年装机容量达到4.4亿千瓦,预计2005年要突破5亿千瓦,仅比美国装机容量少3亿千瓦左右。但是,尽管如此,我国的电力供应仍日益紧缺,尤其是高峰不足与低谷过剩的矛盾日益突出,如果全靠新建电厂来满足尖峰需求,则势必造成电厂及输配电设备投资的浪费,使国家经济遭受损失,如1997年每千瓦装机容量所产生的国民经济总产值为28800元,而到2004年则降为27300元,随着未来几年新建电厂的陆续投产,此现象将更加突出。这样不能充分利用廉价环保能源,与

7、建设节约型社会的要求不相符合。如果采用需求侧调控的方法,如空调的冰蓄冷等可以将用电时间移至非高峰期,起到“移峰填谷”的作用。以上海市为例,历史最高用电负荷为1668.2万千瓦,而同日的最低用电负荷为1050万千瓦,其中空调用电约占45%,同使用常规空调相比,冰蓄冷空调有25%左右的移峰能力,理论上可转移11%的高峰负荷到低谷。冰蓄冷中央空调技术是转移高峰电力、开发低谷用电、优化资源配置、保护生态环境的一项重要技术措施,符合中国的长期国策。1.冰蓄冷空调简介1.1冰蓄冷空调的原理冰蓄冷空调技术的原理即是在电力负荷很低的离峰时段或称用电低谷期启动压缩机运转,采用制冷机冷却冰水制冰,利用制冷介质的显

8、热或潜热特性,用一定方式将冷量存储起来。在电力负荷较高的白天,也就是用电高峰期,需要使用空调,而又不适宜运转冷气机组的时间,即可让夜间所储存的冰溶化,吸收空调冰水的热量,把储存的冷量释放出来,达到冰水冷却的效果,如此即可将白天尖峰时段的冷气用电需量,转移至夜间离峰时段,以满足建筑物空调或工艺技术的需要。冰蓄冷实际上是对能源的一种储备在用电低谷、电价较低(或中央空调不需要工作)时开始制冰,蓄存冷量;而在用电高峰、电价较高(中央空调需要工作)时停止制冰、同时依靠冰的融化来制冷,从而完成能源利用在时间上的转移,节省运行费用,降低运行成本。1.2冰蓄冷空调的系统构成图图1 冰蓄冷系统构成图 冰蓄冷空调

9、系统一般由制冷机组、蓄冷设备( 或蓄水池) 、辅助设备以及调节控制装置等组成。冰蓄冷空调系统设计种类多种多样, 无论采用哪种形式, 其最终的目的是为建筑物提供一个舒适的环境。另外, 系统还应达到能源最佳使用效率, 节省运转电费, 为用户提供一个安全可靠的冰蓄冷空调系统。1.3冰蓄冷空调系统的分类 按冷源分类:冷媒液(盐水等)循环 ,制冷剂直接膨胀式 按制冰形态分类:静态型 ,在换热器上结冰与融冰;最常用的为浸水盘管式外制冰内融方式;动态型,将生成的冰连续或间断地剥离;最常用的是在若干平行板内通以冷媒,在板面上喷水并使其结冰,待冰层达到适当厚度,再加热板面,使冰片剥离,提高了蒸发温度和制冷机性能

10、系数。 按冷水输送方式分类 :二次侧冷水输送方式为冰蓄冷槽与二次侧热媒相通 ,一次侧与二次侧相通的盐水输送方式 按装置组成分类 :现场安装型 ,适用于大型建筑物;机组型 ,将制冷机与冰蓄冷槽等组合成机组,由工厂生产,适用于中小型建筑物。1.4冰蓄冷空调的优缺点1.4.1冰蓄冷空调的优点l 可以转移制冷机组的用电时间,起到了转移用电高峰期用电负荷的作用;l 空调蓄冷系统的制冷设备容量和装置的功率小于常规空调系统。一般可减少30%-50%;l 断电时利用一般功率发电机仍可保持室内空调的运行;l 可以快速达到制冷效果;l 降低噪乱冷水流量与循环风减少,即减少空调机组运行时运转振动及噪音的降低;l 实

11、用寿命比普通空调长;l 空调蓄冷系统中制冷设备满负荷运行的比例增大,状态稳定,提高可设备利用率。1.4.2冰蓄冷空调的缺点l 对于冰蓄冷系统,其运行效率将降低;l 增加了蓄冷设备费用及其占用的空间;l 增加水管和风管的保温费用;l 冰蓄冷空调系统的制冷主机性能系数(COP)要下降。1.5蓄冰流程选择蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液

12、温度降低,再送回负荷端满足空调冷负荷的需要。乙二醇溶液系统的流程有两种:并联流程和串联流程(参见图2):l 并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。l 串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。a.并联流程 b.串联流程 图2 蓄冷流程图 一般来说,串联系统中多采用“制冷机上游”的方式,此时,制冷机的进水温度较高,有利于制冷机的高效率与节电运行;“制冷机下游”的方式冰蓄冷贮槽可以按

13、照较高的释冷温度来确定容量,冰蓄冷贮槽的体积要小,制冷机的出水温度低,制冷机的效率相应较低,但制冷机与冰蓄冷贮槽的费用较“制冷机上游”要低。并联系统则是最常见的系统,系统操作运行简单方便,在发挥制冷机与蓄冰罐的放冷能力方面均衡性较好,夜间蓄冷时只需开启功率较小的初级泵运行,蓄冷时更节能,运行灵活。串联流程系统较简单,放冷恒定,适合于较小的工程和大温差供冷系统。1.6.冰蓄冷空调的效益1.6.1宏观效益l 转移电力高峰用电量,平衡电网峰谷差 l 减少新建电厂投资 l 减少环境污染,有利于生态平衡 l 充分利用有限的不可再生资源1.6.2微观效益l 减少主机装机容量和功率可达30%50% l 相应

14、减少冷却塔的装机容量和功率 l 设备满负荷运行比例增大,可充分提高设备利用率 l 减少一次电力投资费用,包括电贴费、变压器、配电柜等 l 利用分时电价,可节省大量的运行费用 可作为应急冷源,停电时可利用自备电力启动水泵融冰供冷2.评价冰蓄冷系统的几个指标2.1制冷系统的蒸发温度蓄冷空调系统特别是冰蓄冷式空调系统在蓄冷过程中,一般会造成制冷机组的蒸发温度的降低。理论上说蒸发温度每降低 l,制冷机组的平均耗电率增加 3。因此在配置系统,选择蓄冷设备时应尽可能地提高制冷机组的蒸发温度。对于冰蓄冷系统,影响制冷机组的蒸发温度的主要因素是结冰厚度,制冰厚度越薄,蓄冷时所需制冷机组的蒸发温度较高,耗电量较

15、少;但是制冰厚度太薄,则蓄冰设备盘管换热面积增加,槽体体积加大,因此一般应考虑经济厚度来控制制冷系统的蒸发温度。2.2名义蓄冷量与净可利用蓄冷量名义蓄冷量是指由蓄冷设备生产厂商所定义的蓄冷设备的理论蓄冷量(一般比净可用蓄冷量大)。 净可利用蓄冷量是指在一给定的蓄冷和释冷循环过程中,蓄冷设备在等于或小于可用供冷温度时所能提供的最大实际蓄冷量。净可利用蓄冷量占名义蓄冷量的百分比例值是衡量蓄冷设备的一个重要指标,此比例值越大,则蓄冷设备的使用率越高,当然此数值受蓄冷系统很多因素的影响,如蓄冷系统的配置,设备的进出口温度等。对于冰蓄冷系统此数值可近似为融冰率。2.3制冰率与融冰率目前制冰率(IPF)有两种定义,一是指对于冰蓄冷式系统中,当完成一个蓄冷循环时,蓄冰容器内水量中冰所占的比例另一个是指蓄冰槽内制冰容积与蓄冰槽容积之比。而融冰率是指在完成一个融冰释冷循环后,蓄冰容器内融化的冰占总结冰量的百分比。制冰率与融冰率这两个概念是冰蓄冷式系统中评价蓄冰设备的两个非常重要数值 融冰率与系统的配置有关,对于串联式制冷机组下游的系统,蓄冷设备的融冰率较高;反之,则较低。而并联系统的融冰率界于两者之间。2.4冷特性与释冷特性通常蓄冷系统的蓄冷温度取决于蓄冷速率和这一时间蓄冷槽体的状态特性,对于外融冰式系统是指内管壁的结冰量。对于蓄冷时间短的蓄冰系统,一般需要较高的蓄冷速率,即指较

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号