无穷积分的性质与收敛判别法

上传人:公**** 文档编号:544065799 上传时间:2022-10-05 格式:DOCX 页数:7 大小:13.35KB
返回 下载 相关 举报
无穷积分的性质与收敛判别法_第1页
第1页 / 共7页
无穷积分的性质与收敛判别法_第2页
第2页 / 共7页
无穷积分的性质与收敛判别法_第3页
第3页 / 共7页
无穷积分的性质与收敛判别法_第4页
第4页 / 共7页
无穷积分的性质与收敛判别法_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《无穷积分的性质与收敛判别法》由会员分享,可在线阅读,更多相关《无穷积分的性质与收敛判别法(7页珍藏版)》请在金锄头文库上搜索。

1、资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载无穷积分的性质与收敛判别法地点:时间:说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与 义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时 请详细阅读内容2无穷积分的性质与收敛判别法教学目的与要求:掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握 收敛的Cauchy准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别 法等。教学重点,难点:无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。教学内容:本节介绍了无穷积分的三个性质和四种判别收敛的方法一无穷积分的性质由定义

2、知道,无穷积分收敛与否,取决于函数F (u)二在u+8时是否存 在极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。定理11.1无穷积分收敛的充要条件是:任给0,存在GNa,只要u1、 u2G,便有。证明:由于二所以收敛存在Na,只要u1、u2G,便有此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相 应性质。性质1 (线性性质)若与都收敛,k1、k2为任意常数,则也收敛,且二。(1)证明:记,则二=性质2若f在任何有限区间a, u上可积,aVb,则与同敛态(即同时 收敛或同时发散),且有,(2)其中右边第一项是定积分。证明:由于收敛存在.又=,其中右边第一项是定积分。所

3、以与同敛态(即同时收敛或同时发散),且有.说明:(1)性质2相当于定积分的积分区间可加性;(2)由性质2及无穷积分的收敛定义可推出收敛的另一充要条件:任给 0,存在GNa,当uG时,总有O事实上,收敛J二存在当时,当时,当时,性质3若f在任何有限区间a,u上可积,且有收敛,则亦必收敛,并 有W。(3)证明:由收敛,根据柯西准则(必要性),任给0,存在GNa,当u2 u1G时,总有利用定积分的绝对值不等式,又有再由柯西准则(充分性),证得收敛又因,令uf+8取极限,立刻得到不等式(3).当收敛时,称为绝对收敛,称收敛而不绝对收敛者为条件收敛。性质3指出:绝对收敛收敛。但其逆命题一般不成立,今后将

4、举例说明收 敛的无穷积分不一定绝对收敛(本节例3中当0VpW 1时条件收敛)。二比较判别法这一部分介绍无穷积分的绝对收敛判别法(比较准则及其三个推论)。由于关于上限u是单调递增的,因此收敛的充要条件是存在上界。根据这 一分析,便立即导出下述比较判别法(请读者自己写出证明):定理11.2 (比较法则)设定义在a,+8上的两个函数f和g都在任何有 限区G(u)间a,u可积,且满足,则当收敛时必收敛(或者,当发散时,发散)。证明法一根据P55习题2结论:设f为定义在上的增(减)函数.则存在的充要条件为f在上有上(下)界.当收敛时,存在.又G(u)单增,从而存在M0,使得F(u)=即F(u)有上界M.

5、 又显然F(u)单增.故存在,从而必收敛.法二由于收敛,根据柯西准则(必要性),对任意存在GNa,当u2u1 6时,总有又因此有根据柯西准则(充分性),收敛.口解由于Vx,以及为收敛(1例4),根据比较法则,为绝对收敛。上述比较法极限形式如下:推论1若f和g都在任何a,u上可积,g(x)0,且,则有(i) 当0 VcV+8时,与同敛态;(ii) 当c=0时,由收敛可推知也收敛;(iii) 当c=+8时,由发散可推知也发散。证明(i)对当时,艮口从而由比较法则结合性质2知,与同敛态.(ii) 由对当时,从而从而由比较法则结合性质2知,由收敛可推知也收敛.(iii) 由对当时,从而从而由比较法则结

6、合性质2知,由发散可推知也发散.口当选用作为比较对象时,比较判别法及其极限形式成为如下两个推论(称 为柯西判别法)。推论2设f定义于(a0),且在任何有限区间a,u上可积,则有:(i) 当,xE,且p1时收敛;(ii) 当,xE,且pW1时发散。推论3设f定义于,在任何有限区间a,u上可积,且,则有:(i) 当 p1,0WV+8时,收敛;(ii) 当 pW1,0VW+8 时,发散。例2 讨论下列无穷限积分的收敛性:1);2).解 本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事。1)由于对任何实数都有 .因此根据上述推论3(P=2, =0),推知1)对任何实数都是收敛的。2)由于二1,

7、因此根据上述推论3 (P二,=1),推知2)是发散的。对的比较判别亦可类似地进行。三狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法。定理11.3 (狄利克雷判别法)若F (u)二在上有界,g (x)在上当xf+8 时单调趋于0,则收敛。证明 由条件设0,由于二0,因此存在GNa,当xG 时,有。又因g为单调函数,利用积分第二中值定理(定理9.10的推论),对 于任何u2u1G,存在eu1,u2,使得O于是有V.根据柯西准则,证得收敛。口定理11.4(阿贝尔(Abel)判别法) 若收敛,g (x)在上单调有界,则 收敛。这定理同样可用积分第二中值定理来证明,但又可利用狄利

8、克雷判别法更 方便地获得证明(留作习题10)。解这里只讨论前一个无穷积分,后者有完全相同的结论。下面分两种情 形来讨论:(i) 当p1时绝对收敛。这是因为,而当p1时收敛,故由比较法则推知收敛。(ii) 当0 VpW 1时条件收敛。这是因为对任意uNl,有,而当p0时 单调趋于0 (xf+8),故由狄利克雷判别法推知当p0时总是收敛的。另一方面,由于,其中满足狄利克雷判别条件,是收敛的,而是发散的,因此当0VpW 1时该无穷积分不是绝对收敛的。所以它是条 件收敛的。口证明下列无穷积分都是条件收敛的:,O证 前两个无穷积分经换元t=x2得到二,=.由例3已知它们是条件收敛的。对于第三个无穷积分,经换元t=x2而得二,它也是条件收敛的。从例4中三个无穷积分的收敛性可以看到,当xf+8时被积函数即使不趋 于零,甚至是无界的,无穷积分仍有可能收敛(P269 exe 4)。课后作业题:3,4 (2)、(4),5 (2).(4)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号