大跨径桥梁斜拉桥的施工控制论文.doc

上传人:新** 文档编号:543877413 上传时间:2022-12-14 格式:DOC 页数:22 大小:359KB
返回 下载 相关 举报
大跨径桥梁斜拉桥的施工控制论文.doc_第1页
第1页 / 共22页
大跨径桥梁斜拉桥的施工控制论文.doc_第2页
第2页 / 共22页
大跨径桥梁斜拉桥的施工控制论文.doc_第3页
第3页 / 共22页
大跨径桥梁斜拉桥的施工控制论文.doc_第4页
第4页 / 共22页
大跨径桥梁斜拉桥的施工控制论文.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《大跨径桥梁斜拉桥的施工控制论文.doc》由会员分享,可在线阅读,更多相关《大跨径桥梁斜拉桥的施工控制论文.doc(22页珍藏版)》请在金锄头文库上搜索。

1、大跨径桥梁探讨斜拉桥的施工控制大跨径桥梁探讨 斜拉桥的施工控制中文摘要摘要:随着交通事业的大力发展的需求,我国大跨径桥梁的设计和施工技术也随之迅速发展。 我国大跨径桥梁数量大,拥有世界领先水平,但与美国等发达国家仍有差距。本文针对施工控制在斜拉桥建设中的重要性, 阐述了我国混凝土斜拉桥施工控制的发展情况。讨论了混凝土斜拉桥施工控制的内容、方法、结构计算、施工误差调整以及新进展。 通过借鉴已建大跨径桥梁设计施工先进经验,提出了大跨径桥梁建设在设计中应注重前期工作和专题研究,不断提高自主创新设计和计算机辅助设计能力,重视结构耐久性和工程的质量、安全、环保和美学问题;在实际施工中施工单位应提高施工实

2、力和科研能力,自主创新施工工艺、方法,以确保预应力施工质量和有效监测监控。 关键词:斜拉桥,国内外现状,施工控制,建设问题,结构分析i目录中文摘要i1 绪论1.1 选题背景1.2 选题的目的与意义1.3 国内外研究现状1.4 大跨径桥梁的发展趋向2 施工计算的方法2.1 倒拆法2.2 正算法2.2.1 刚性支承连续梁法2.2.2 五点(四点)为零法2.2.3 零弯矩悬拼法3 施工控制方法3.1控制原理3.2结构分析3.3施工控制的原则与方法3.3.1 斜拉桥施工的开环控制法3.3.2 斜拉桥施工的反馈控制法3.3.3 斜拉桥施工的自适应控制法4 施工控制内容4.1线形控制内容及方法4.1.1

3、线型测量4.1.2 计算模型的更新和线形修正计算4.1.3 立模标高的放样和线形测量4.2索力控制4.2.1索力测量4.2.2 索力离散性控制4. 3主梁应力控制4. 4索塔应力测试4. 5温度控制5 施工控制中的误差处理5.1 基于现代控制理论5.2 参数识别修正法6 混凝土斜拉桥施工控制新进展7 结语参考文献1 绪论斜拉桥由于其跨度最具竞争力、景观新颖, 再加上新材料的开发、设计理论和计算技术的进步、施工技术的进步以及整体桥面的开发,现代斜拉桥的发展非常迅速。进入20 世纪70 年代后, 混凝土斜拉桥大量兴起。斜拉桥的施工多采用无支架施工, 即自架设体系施工, 这给桥梁结构带来较为复杂的内

4、力和位移变化, 为了保证桥梁施工质量和施工安全, 使桥梁的线形和内力达到设计的预期值, 桥梁施工控制是不可缺少的。日本对斜拉桥的施工控制研究开展较早, 在20 世纪80年代就发表了许多相关论文, 取得了较好的效果。与日本修建钢斜拉桥较多不同, 我国以混凝土斜拉桥为主, 由于混凝土材料具有收缩徐变的时变特性, 使得控制更为困难。桥梁施工控制在国内起步较晚, 20世纪90 年代以前在桥梁施工中已注意到结构应力调整和预拱度的设置, 但并未将系统控制概念引入, 桥梁在施工中垮塌和成桥状态不符合设计要求的情况时有发生。20 世纪90 年代以后, 人们逐渐从理论与实践中认识到桥梁施工控制的重要性, 对混凝

5、土斜拉桥的施工控制开展了相关研究, 取得不少研究成果和工程实践经验。斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线型和结构恒载内力有着密切的联系。另一方面,在施工阶段随着斜拉桥结构体系和荷载状态的不断变化,结构内力和变形亦随之不断发生变化,因此需对斜拉桥的每一施工阶段进行详尽的分析、验算,求得斜拉索张拉吨位和主梁挠度、塔柱位移等施工控制参数的理论计算值,对施工的顺序作出明确的规定,并在施工中加以有效的管理和控制。如此方能确保斜拉桥在施工过程中结构的受力状态和变形始终处在安全的范围内,成桥后主梁的线型符合预先的期望,结构本身有处于最优的受力状态。这就是斜拉桥在建造过程中都必须

6、解决的一个重要课题,即斜拉桥的施工控制。1.1 选题背景当前,我国在大连渤海湾、长江口、珠江流域和海南琼州海峡,需要修建多座跨海跨江的桥梁工程,比如大连渤海跨海大桥;长江口的苏通长江大桥、润扬长江大桥、上海的大跨度桥梁、东海跨海大桥、杭州湾跨海大桥、杭州湾沪甬大桥、舟山西猴门悬索桥和金塘大桥、绍嘉大桥等大跨度桥梁工程;珠江口的虎门大桥、虎门二桥、内伶仃洋大桥和外伶仃洋大桥等,另外琼州海峡跨海工程,海西经济区的台湾海峡跨海工程等。我国大跨度桥梁建设取得了辉煌的成就,有世界第一大跨度斜拉桥苏通长江大桥,在斜拉桥跨度前十名的大桥中,中国占据八席,还有昂船洲、鄂东长江、荆岳长江、上海长江、南京长江二桥

7、、三桥等大跨度斜拉桥。这些充分表明,我国大跨度桥梁建设已经达到世界领先水平,是我们桥梁工程专业的学生引以为豪和继续学习、不断创新的动力源泉。当然,世界上大跨度桥梁的建设也取得了很大的建设成就,如美国、日本和欧洲的英国、丹麦等。到目前为止,我国的大跨度桥梁建设总体上说,仍然处于赶超阶段,局部领先的水平。1.2 选题的目的与意义随着经济的发展、城市化进程的加快、人民生活水平的不断提高,运输需求显得越来越旺盛,既有的运输能力已表现出明显的不足,运输已经不能适应国民经济的发展需要,成为制约我国经济发展的“瓶颈”。改革开放以来,我国社会主义现代化建设和各项事业取得了世人瞩目的成就,公路交通的大发展和西部

8、地区的大开发为公路桥梁建设带来了良好的机遇。十年来,我国大跨径桥梁的建设进人了一个最辉煌的时期,在中华大地上建设了一大批结构新颖、技术复杂、设计和施工难度大、现代化品位和科技含量高的大跨径斜拉桥、悬索桥、拱桥、PC连续刚构桥,积累了丰富的桥梁设计和施工经验,我国公路桥梁建设水平已跻身于国际先进行列。现综述大跨径桥梁斜拉桥国内外建设和发展现状情况,以及存在的问题,施工设计等问题1.3 国内外研究现状斜拉桥作为一种拉索体系,比梁式桥有更大的跨越能力。由于拉索的自锚特性而不需要悬索桥那样巨大锚旋,加之斜拉桥有良好的力学性能和经济指标,已成为大跨度桥梁最主要桥型,在跨径200一800m的范围内占据着优

9、势,在跨径800 -1100m特大跨径桥梁角逐竞争中,斜拉桥将扮演重要角色。斜拉桥由索塔、主梁、斜拉索组成,选择不同的结构外形和材料可以组合成多彩多姿、新颖别致的各种形式。索塔型式有A型、倒Y型、H型、独柱,材料有钢、混凝土的。主梁有混凝土梁、钢箱梁、结合梁、混合式梁。斜拉索布置有单索面、平行双索面、斜索面,拉索材料有热挤PE防护平行钢丝索、PE外套防护钢绞线索。现代斜拉桥可以追溯到1956年瑞典建成的主跨182. 6m斯特伦松德桥。历经半个世纪,斜拉桥技术得到空前发展,世界已建成主跨200m以上的斜拉桥有200余座,其中跨径大于400m的有40余座。尤其20世纪90年代以后在世界上建成的著名

10、的斜拉桥有法国诺曼底斜拉桥(主跨856m ),南京长江二桥钢箱梁斜拉桥(主跨628m)福建青州闽江结合梁斜拉桥(主跨605m) ,挪威斯卡恩圣特混凝土梁斜拉桥(主530m) ,1991年日本建成的世界最大跨度多多罗大桥(主跨890m),是斜拉桥跨径的一个重大突破,是世界斜拉桥建设史上的一个里程碑(表1)。我国自1975年四川云阳建成第一座主跨为76m的斜拉桥,二十多年过去了,这种在二次大战后复兴的桥型,在中国改革开放的形势下,得到了充分的发展和推广,至今已建成各种类型斜拉桥100多座,其中跨径大于200m的有52座。多年来,我国在斜拉桥设计、施工技术、施工控制、斜拉索的防风、雨振等方面,积累了

11、丰富的经验。80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423m结合梁斜拉桥),开创了我国修建400m以上大跨度斜拉桥的先河,大跨径斜拉桥如雨后春笋般的发展起来。据统计,我国修建跨度大于400m的斜拉桥有加座,已建成通车14座,在建6座(表2)。我国已成为拥有斜拉桥最多的国家,在世界10大著名斜拉桥排名榜上,中国有6座,跨度600m以上的斜拉桥世界仅有6座,中国占了4座。主梁结构类型多种,有钢箱梁4座、混合式5座、结合梁4座、混凝土梁7座;斜拉索采用平行钢丝的有巧座、钢绞线的有3座。 2001年建成的名列世界第三位的南京长江二桥钢箱梁斜拉桥(主跨62

12、8m)和名列世界第五位的福建青州闽江结合梁斜拉桥(主跨605m)均处于世界斜拉桥领先地位。整体来说,我国斜拉桥设计施工水平已迈人国际先进行列,部分成果达到国际领先水平。目前,我国正在筹划建设的香港昂船洲大桥、江苏苏通大桥,其主跨均达到1000m以上,斜拉桥建设技术将要有新的突破。1.4 大跨径桥梁的发展趋向综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。就中国来说,国道主干线同江至三亚就有5个跨海工程,渤海湾跨海工程、长江口跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。其中难度最大的有渤海湾跨海工程,海峡宽57km,建成后将成为世界上最长的桥梁;琼

13、州海峡跨海工程,海峡宽20km,水深40m,海床以下130m深未见基岩,常年受到台风、海浪频繁袭击。此外,还有舟山大陆连岛工程、青岛至黄岛、以及长江、珠江、黄河等众多的桥梁工程。在世界上,正在建设的著名大桥有土耳其伊兹米特海湾大桥(悬索桥,主跨1668m);希腊里海安蒂雷翁桥(多跨斜拉桥,主跨286m+ 3 x 560m十286m),已获批准修建的意大利与西西里岛之间墨西拿海峡大桥,主跨3300m悬索桥,其使用寿命均按200年标准设计,主塔高376m,桥面宽60m,主缆直径1.24m,估计造价45亿美元;在西班牙与摩洛哥之间,跨直布罗陀海峡桥也提出了一个修建大跨度悬索桥,其中包含2个5OOOm

14、的连续中跨及2个2000m的边跨,基础深度约300m。另一个方案是修建三跨3100m十8400m + 4700m的巨型斜拉桥,基础深约300m,较高的一个塔高达1250m较低的一个塔高达850m。这个方案需要高级复合材料才能修建,而不是当今桥梁用的钢和混凝土。 2 施工计算的方法2.1 倒拆法倒拆法是斜拉桥施工计算中广泛采用的一种方法。通过对斜拉桥由成桥状态出发,按照与实际施工步骤相反的顺序,进行逐步倒退计算而获得各施工阶段的控制参数。结构据此按正装顺序施工完毕时,理论上斜拉桥的恒载内力和线型便可达到预定的理想状态。对于大跨径混凝土斜拉桥,施工计算中如不考虑混凝土收缩、徐变的影响,计算结果将发

15、生较大的偏差,但是混凝土的徐变与结构形成的过程有关,原则上倒拆法无法进行徐变计算。这是因为徐变计算在时间上只能顺序的,而倒拆法在时间上是逆序的。一般可应用迭代法来解决这个问题。即第一轮倒拆计算时不计入混凝土的收缩、徐变,然后以倒拆结果进行正装计算,逐阶段计算混凝土的收缩、徐变影响,再进行倒拆法计算时,按阶段叠加入正装计算时相应阶段混凝土的收缩、徐变影响,如此反复迭代,直至计算结果收敛。2.2 正算法正算法采用与斜拉桥施工相同的顺序,依次计算各阶段架设时结构的施工内力和位移。然后依据一定的计算原则,选择相应的计算参数作为未知变量,通过求解方程而获得相应的控制参数。只要计算参数选择得当,结构按正算法所获得的控制参数和顺序施工完毕时,理论上斜拉桥的恒载内力和主梁线型应与预定的理想状态基本吻合。以下是采用悬臂施工方法的斜拉桥运用正算法进行施工计算时所常用的一些设计原则。2.2.1 刚性支承连续梁法刚性支承连续梁法是在施工过程中及成桥后多次张拉拉索索力,使斜拉桥主梁在恒载状态下的内力与相

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 商业合同/协议

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号