《平抛运动的典型例题》由会员分享,可在线阅读,更多相关《平抛运动的典型例题(6页珍藏版)》请在金锄头文库上搜索。
1、平抛运动典型例题(习题)专项一:平抛运动轨迹问题认准参照系1、从水平匀速飞行的直升机上向外自由释放一种物体,不计空气阻力,在物体下落过程中,下列说法对的的是( )A从飞机上看,物体静止 B从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动 .从地面上看,物体做自由落体运动专项三:平抛运动“撞球”问题判断两球运动的时间与否相似(h与否相似);类比追击问题,运用撞上时水平位移、竖直位移相等的关系进行解决、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力要使两球在空中相遇,则必须 ( )A甲先抛出球 B先抛出球C同步抛出两球D.使两球质量相等、如图所示
2、,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有也许使乙球击中甲球的是( )A.同步抛出,且v1 2C甲先抛出,且v1 v2D甲先抛出,且1 v2专项四:平抛运动的基本计算题类型核心在于对公式、结论的纯熟掌握限度;建立等量关系基本公式、结论的掌握5、一种物体从某一拟定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是(). B C . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( ) A物体所受的重力和抛出点的高度 .物体所受的重力和初速度C.物体的初速度和抛出点的高度 D.物体所
3、受的重力、高度和初速度、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( )A.ta=sinB. tancos. tan=tan D. tan2tan8、将物体在=20m高处以初速度v=10ms水平抛出,不计空气阻力(g取1m/2),求: ()物体的水平射程(2)物体落地时速度大小9、如图所示,一条小河两岸的高度差是h,河宽是高度差的4倍,一辆摩托车(可看作质点)以v0=m/的水平速度向河对岸飞出,正好越过小河。若g=10m/s2,求:()摩托车在空中的飞行时间1s()小河的宽度010、如图所示,一小球从距水平地面h高处,以初速度0
4、水平抛出。 ()求小球落地点距抛出点的水平位移()若其她条件不变,只用增大抛出点高度的措施使小球落地点到抛出点的水平位移增大到本来的2培,求抛出点距地面的高度。(不计空气阻力)11、子弹从枪口射出,在子弹的飞行途中,有两块互相平行的竖直挡板A、B(如图所示),A板距枪口的水平距离为s1,两板相距s2,子弹穿过两板先后留下弹孔C和D,C、两点之间的高度差为h,不计挡板和空气阻力,求子弹的初速度012、从高为h的平台上,分两次沿同一方向水平抛出一种小球。如右图第一次小球落地在a点。第二次小球落地在点,ab相距为d。已知第一次抛球的初速度为,求第二次抛球的初速度是多少? 专项五:平抛运动位移相等问题
5、建立位移等量关系,进而导出运动时间(t)13、两个物体做平抛运动的初速度之比为21,若它们的水平射程相等,则它们抛出点离地面高度之比为()A2 B1 C.14 D1 、以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移( )大小相等,如下判断对的的是A此时小球的竖直分速度大小等于水平分速度大小 B此时小球的速度大小为C小球运动的时间为 D.此时小球速度的方向与位移的方向相似专项六:平抛运动位移比例问题明确水平、竖直位移的夹角,通过夹角的正切值求得两位移比值,进而求出运动时间(t)或运动初速度(0)通过位移比例导出运动时间(t)、如图所示,足够长的斜面上A点,以水平速度v0
6、抛出一种小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v0抛出,落到斜面上所用时间为t2,则t1 : t2为( )1 : . : .1 : D.: 46、如图所示的两个斜面,倾角分别为37和,在顶点两个小球、B以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球平抛运动时间之比为 ( )A:1 B.4:3 C.16:9D.9:1617、跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动。运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆。如图所示,设某运动员从倾角为=37的坡顶A
7、点以速度0=20m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以当作一种斜面。(g=0/2,in37=0.,co37=0.8)求:(1)运动员在空中飞行的时间t;(2)间的距离s 、如图所示,从倾角为的斜面上的M点水平抛出一种小球,小球的初速度为v0,最后小球落在斜面上的点,求()小球的运动时间;(2)小球达到N点时的速度 9、如图所示,一小球自平台上水平抛出,正好落在临近平台的一倾角为 53的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h0.8,g=1m/s,sin5=.8,cos53=.6,则(1)小球水平抛出的初速度是多少?.5m/s(2)斜面顶端与平台边沿的水平距离
8、s是多少?0.6专项七:平抛运动速度比例问题明确水平、竖直速度的夹角,通过夹角的正切值求得两速度比值,进而求出运动时间(t)或运动初(水平)速度(0)通过速度比例导出运动时间(t)2、如图所示,以9.m的水平初速度0抛出的物体,飞行一段时间后,垂直地撞在倾角为30的斜面上,可知物体完毕这段飞行的时间是 ( )A.s Bs Cs D.221、如图所示,高为h1.25 m的平台上,覆盖一层薄冰,既有一质量为60k的滑雪爱好者,以一定的初速度向平台边沿滑去,着地时的速度方向与水平地面的夹角为45(取重力加速度g=10 m2)由此可知对的的是( )滑雪者离开平台边沿时的速度大小是5.0 m/sB滑雪者
9、着地点到平台边沿的水平距离是2.m滑雪者在空中运动的时间为0. s.滑雪者着地的速度大小为5 m/2、在冬天,高为h=1.25m的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边沿s=24m处以一定的初速度向平台边沿滑去,如图所示,当她滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为,取重力加速度g=0m/s2。求:(1)滑动者着地点到平台边沿的水平距离是多大;()若平台上的冰面与雪撬间的动摩擦因数为,则滑雪者的初速度是多大?专项八:平抛运动速度方向问题 平抛运动速度比例问题抓住水平速度v0不变,通过比例,导出不同的竖直速度,进而求出物体运动时间(t);运用不同的竖直速度的大小关系
10、,通过比例,进而求出物体运动的初(水平)速度(v0)抓住水平速度v不变,通过比例,导出不同的竖直速度,进而求出物体运动时间(t)、一物体自某一高度被水平抛出,抛出1s后它的速度与水平方向成45角,落地时速度与水平方向成60角,取g=1/s2,求:(1)物体刚被抛出时的速度大小;(2)物体落地时的速度大小;(3)物体刚被抛出时距地面的高度.运用不同的竖直速度的大小关系,通过比例,进而求出物体运动的初(水平)速度()24、水平抛出一小球,t秒末速度方向与水平方向的夹角为1,(t)秒末速度方向与水平方向的夹角为2,忽视空气阻力作用,则小球的初速度大小是 ( )A. t(c-cos1) . t/(co
11、s2-os1)C gt(an2-tan1) D. gt(ta2ta1) 专项九:平抛运动离开斜面最大高度问题运动速度、加速度(g)沿垂直于斜面的方向分解并结合“类竖直上抛”运动,求得“类竖直上抛”运动到最高点的距离(H)25、如图所示,一小球自倾角=37的斜面顶端以水平速度02m/s抛出,小球刚好落到斜面的底端B(空气阻力不计),求小球在平抛运动过程中离开斜面的最大高度.专项十:平抛运动实验题在选择、计算中的体现已知完整运动,求各段时间,运用自由落体的比例规律求解即可;已知部分运动,求各段时间,需要运用自由落体运动部分的h=g2求解已知完整运动,求各段时间2、如图所示,某同窗用一种小球在点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是,不计空气阻力。打在挡板上的位置分别是B、,且。则之间的对的关系是 ( )A . D.已知部分运动,求各段时间27、如图所示,、B、C为平抛物体运动轨迹上的三点,已知、B间与B、C间的水平距离均为x,而竖直方向间的距离分别为y1、y.试根据上述条件求平抛物体的初速度及点瞬时速度的大小 ;