立方体与圆柱体试件抗压强度关系分析

上传人:大米 文档编号:543219317 上传时间:2022-08-12 格式:DOCX 页数:6 大小:24.69KB
返回 下载 相关 举报
立方体与圆柱体试件抗压强度关系分析_第1页
第1页 / 共6页
立方体与圆柱体试件抗压强度关系分析_第2页
第2页 / 共6页
立方体与圆柱体试件抗压强度关系分析_第3页
第3页 / 共6页
立方体与圆柱体试件抗压强度关系分析_第4页
第4页 / 共6页
立方体与圆柱体试件抗压强度关系分析_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《立方体与圆柱体试件抗压强度关系分析》由会员分享,可在线阅读,更多相关《立方体与圆柱体试件抗压强度关系分析(6页珍藏版)》请在金锄头文库上搜索。

1、立方体与圆柱体试件抗压强度关系分析为了能在同一基础上去比较、判断混凝土强度指标,减少因不同试验方法所造成的混乱,各国对混凝土 强度指标的测定都制定了各种严格和“标准”试验方法.对测定混凝土抗压强度所用试件,德国、英国及许多欧 洲国家采用立方体试件,美国、日本、法国、加拿大、澳大利亚以及新西兰等采用圆柱体试件我国则以边长 为150 mm的立方体试件作为测定抗压强度的标准试件;由于各国情况不同,迄今为止,在国际上对抗压强度试 件的形状、尺寸尚未完全统一 .总得来说,测定混凝土抗压强度所用标准试件主要有立方体与圆柱体二种.在国际间频繁的涉外交流,以及我国加入WTO的形式下,普通混凝土立方体试件与圆柱

2、体试件之 间的强度关系,便成为一个值得关注的问题.我国玩行普通混凝土力学性能试验方法标准GB/T50081 (以 下简称力学性能指标)对立方体与圆柱体试件,仅仅只从各自的制作、养护、受压等方面作详细规定、 说明,就二者之间的强度关系却没有涉及,这未尝不是遗憾与不足.一 .立方体与圆柱体试件强度分析:不同几何形体的试件受压过程中的受力并不相同;对立方体与圆柱体试件而言,受摩擦力效应,支座与 试件接触面之间的摩擦力将对混凝土试件的横向膨胀起着约束作用,使混凝土强度提高,这种约束作用离试 件端部越远影响越小,标准圆柱体试件(150 mmx300 mm)的高度为标准立方体试件(150 mX150 mX

3、150 mm) 的二倍,其端部所受摩擦约束作用远远小于立方体试件,故其抗压强度低于立方体试件抗压强度;另外,圆柱体 试件顶面(受压面)尽管按照标准要求进行端面处理,在某种程度上说还是粗糙的,并非真正的平面;因引,其光 滑程度(平整度)有可能产生应力集中,导致混凝土抗压强度降低,这种端面不平整引起的负面效果,也是影响 圆柱体抗压强度的一个不利因素(与侧面受压的立方体试件相比).对于标准圆柱体试件抗压强度fcc,15和标准立方体试件抗压强度fcc,15之间的关系,有的资料 认为:fcc,15=(0.790.81)fcc,15;也有资料提出圆柱体强度换算成立方体试件强度的参用公式:Fcc=1.25f

4、cc式中:fcc一换算成边长等于圆柱体直径的立方体强度(Mpa)fcc一高径比为2的圆柱体强度(Mpa)国际标准ISO/DID7034硬化混凝土芯样的钻取、检查和抗压试验针对二者的抗压强度,作出不同 的强度等级划分:ISO按抗压强度划分的混凝土等级表(表1)混凝土强度等级混凝土强度标准值(Mpa)fcc,15/fcc.15圆柱体试件150 mmx300 m立方体试件150 mx150 mx150 mC2/2.52.02.50.80C4/54.05.0C6/7.56.04.5C8/108.010.0C10/12.510.012.5C12/1512.015.0C16/2016.020.0C20/2

5、520.025.0C25/3025.030.00.83C30/3530.035.00.86C35/4035.040.00.88C40/4540.045.00.88C45/5045.050.00.90C50/5550.055.00.90从ISO混凝土强度等级表中推算的fcc,15/fcc.15可知:在较低等级的混凝土中,圆柱体与立方体试件 抗压强度的比较值较大,有20%左右的差距;随着混凝土强度等级的提高,二者的强度比值有渐趋于1的可能 性.对立方体抗压强度等级 C55以下的普通混凝土,由ISO划分的抗压强度等级可知:fcc,15=(0.80 0.90)fcc.15不管圆柱体与立方体试件之间的强

6、度比值具体是多少,都表明立方体与圆柱体试件抗压强度之间的不 对等性;也表明不同方法测得的力学性能数值之间通常没有单一的相互关系;立方体及圆柱体测定的抗压强 度,其比值(圆柱体强度/立方体强度)不是常数,而是随着混凝土强度的不同而改变.对这一事实,国家相关标准 应作出相应的说明,以免在涉外工程中产生不必要的麻烦,乃至引起工程纠纷.二.圆柱体试件与芯样试件高径比分析:国际标准ISO及我国标准都明确规定:寸150 mmx300mm为圆柱体的标准试件,100mmx200 mm和200 mmx400 mm为圆柱体非标准试件,故可认为圆柱体试件标准高径比为2;然而钻芯法检测混凝土强度技术规 程CECS 0

7、3:88(以下简称钻芯法)中对芯样(芯样试件也属于圆柱体试件)高径比的规定与此有所不 同:“第4.0.4条:芯样抗压试件的高度和直径之比应在12的范围内.第4.0.1条文说明:.根据国内外的一些试验证明,高度和直径均为100 mm的芯样与边长为150 mm立方 体试块的强度是比较接近的.因此,宜采用直径和高度均为100 mm的芯样试件.6.0.3条:高度和直径均为100 mm或150 mm芯样试件的抗压强度测试值,可直接作为混凝土的强度换算 值.”以上条文表明,芯样试件(圆柱体试件)的高径比宜取1.鉴于试件高径比对抗压强度有较大影响,在同一 标准取样、制作、加工、养护(注:同一取样、制作试件进

8、行标准养28d)后,一部分的情况下,了解高径比在 12时a的相关换算系数(表4).高径比12时,a以h/d=2为基准,则各个取值与美、英标准及JTJ053-94 中的圆柱体强度修正系数差距较大.(表4)高径比(h/d)1.01.11.21.31.41.51.61.71.81.92.0a0.810.840.860.890.910.930.940.960.970.981.00(注:表4中a数值,以表3中a的各个数值分别除以1.24得出.)有关资料推荐,非标准高径比试件进行试验时强度修正的参用关系式:fA-2= f入-x式中f入-2-换算成高径比为2时的混凝土强度(Mpa)f入-x -试件测得的强度

9、值(Mpa)入x-试件的实际高径比.另外,在相同制作、养护、尺寸条件下,从芯样试件与圆柱体试件之间的等同关系,也引出一些疑问:1. 钻芯试样不等同于圆柱体试件时:钻芯法与圆柱体试件受压法进行混凝土强度检测时,以何种检测方 法为准?在芯样试件强度换算公式合理、适用的情况下,该公式对不同直径、高径比(12)的芯样试件都适用; 非标准圆柱体与标准圆柱体试件之间也应采用类似方法进行强度计算,二者之间的折算系数1.05及0.95毫 无存在根据.2. 钻芯试样等同于圆柱体试件时:芯样试件与圆柱体试件的高径比之间,何种规定正确?圆柱体计算公 式与芯样试件强度换算公式的选用,该如何进行取舍?在试件尺寸效应对检

10、测混凝土强度有影响的情况下,芯样尺寸效应对强度的影响也应进行考虑.根据 圆柱体标准试件与非标准试件的抗村强度关系fcc.15=0.95fcc.10,高度和直径均为100 mm或150 mm芯样试 件的抗压强度测试值之间也应该存在有尺寸换算系数(钻芯法第6.0.2条文说明也指明了这一点),故二 者都不可能直接作为标准立方体试件混凝土的强度换算值.三.立方体与芯样试件强度对比:钻芯法检测混凝土强度的目的,是将钻芯法测得的芯样强度,换算成相应于测试龄期的、边长为150 m 的立方体试块的抗压强度;因此,芯样试件的混凝土强度换算值,只代表构件混凝土的芯样试件,在测试龄期的 抗压结果转换成边长为150

11、mm立方体试块的实际强度值(钻芯法第6.0.1条及条文说明).在制作、养护 条件相同情况下,圆柱体与芯样试件应该彼此等同;受圆柱体与立方体试件之间强度关系的影响,芯样试件的 换算强度与立方体试件强度之间的强度关系,将有别于钻芯法中的说明.在此对有关疑问进行分析:1.标准芯样尺寸分析:在混凝土结构工程施工质量验收规范GB50204中,是以边长为150 mm立方体试块的强度作为混凝 土强度验收与评定标准,因此,芯样强度在转换成立方体试块的强度时,由于尺寸效应的影响,这种转换包括两 部分内容(钻芯法第6.0.2条文说明):一.非标准尺寸(直径、高径比)芯样强度换算成标准尺寸芯样强度; 二.标准尺寸芯

12、样强度换算成标准尺寸立方体试块强度.作为圆柱体试件,一部分钻芯抽取芯样试件;本文所论述的与圆柱体试件同条件制作养护的芯样试件 及其抗压强度都建立于此种方式的情况下,依据钻芯法第6.0.3条规定,对圆柱体与芯样试件之间的强度进行分析推论7立方体抗压强度等级在C55及其以下的普通混凝土)1) .非标准圆柱体(100 mmx200 mm)与芯样试件(100 mmx100 mm)之间的强度分析:由于 fcc,15=(0.790.81)fcc,15 或 fcc,15=(0.800.90)fcc,15 ,fcc.10=1.05fcc.15,fccu.10ufcc,15 , 故 fcc.10=1.05fcc

13、.15=1.05(0.79 0.81)fcc.15=1.05(0.79 0.81)fccu.10=(0.83 0.85)fccu.10)或 fcc.10=1.05fcc.15=1.05(0.80 0.90)fcc.15u1.05(0.80 0.90)fccu.10=(0.84 0.95)fccu.102) .标准圆柱体(150 mmx300 mm)与芯样试件(0150 mx150 mm)之间的强度分析:由于 fcc,15=(0.79 0.81)fcc,15 或 fcc=(0.800.90)fcc,15 ,fccu.15=fcc.15,故 fcc,15=(0.79 0.81)fcc,15=(0.

14、790.81) fccu.15 或 fcc.15= (0.800.90) fcc.15=(0.790.81)fccu.15(fcc,15: 0150 mmx300 mm标准圆柱体试件抗压强度Mpa;fcc,10:100 mmx200 mm非标准圆柱体试件抗压强度Mpa;fccu.10:100 mmx100 mm芯样试件强度Mpa; fcc.15:标准立方体试件抗压强度Mpa;fccu.15:150 mx150 mm芯样试件强度 Mpa)圆柱体试件的高径比分别为1和2时,由以上强度分析可知:对非标准圆柱体(100 mx200 mm)与 芯样试件(100 mx100 mm)之间的强度误差系数为(0

15、.830.85)或(0.840.95);标准圆柱体(150 mmx300 mm)与芯样试件(150 mx150 mm)之间的强度误差系数为(0.790.81)或 (0.800.90);这都说明高径比对混凝土造成的强度误差,不仅随着受压面积的增大而增大,而且也随着混凝 土强度的增长而减小.因此,在强度误差系数如此大的情况下,“高径比为2”(钻芯法中a的取值以1为基 准)或“标准圆柱体高径比为2”(力学性能标准规定)规定的准确性、合理性,尚值的讨论.圆柱体高径比对抗压强度的影响,美国、英国的国家标准规定了相关强度修正系数(表2),我国公 路工程水泥混凝土试验规程JTJ053-94第4.23.6.3条也对此作出相关的修正说明;俵2)高径比 强度修正系数美国 ASTMC42-68英国 B.S.1881;1970JTJ053-94(注)2.001.001.001.001.750.9

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号