学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc

上传人:pu****.1 文档编号:543080853 上传时间:2022-11-15 格式:DOC 页数:20 大小:1.63MB
返回 下载 相关 举报
学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc_第1页
第1页 / 共20页
学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc_第2页
第2页 / 共20页
学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc_第3页
第3页 / 共20页
学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc_第4页
第4页 / 共20页
学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc》由会员分享,可在线阅读,更多相关《学位论文—基于回音壁模式的光纤压力传感器的设计及实验研究.doc(20页珍藏版)》请在金锄头文库上搜索。

1、河南科技大学毕业论文基于回音壁模式的光纤压力传感器的设计及实验研究 摘 要近几年来,传感器在朝着精巧、灵敏、适应性强和智能化的方向发展,并且回音壁模式有较高的Q值、尺寸小、制备方便的优点,吸引了越来越多的人加入到回音壁模式微腔的研究中来。本文利用传感器的基本原理设计了基于回音壁模式的光纤压力传感器,实验中采用了宽带光源、耦合器、光谱分析仪及自制的光学微球。根据对光学微球施加不同的压力,对应的光谱分析仪测量到的光谱图也随之改变,并且压力以等间隔逐渐增加。光谱分析仪测到的数据通过Origin及相关画图软件进行数据处理,为了得到干涉图谱随压力的变化规律。在实验结果分析中,我们选定光谱图中某一段波长,

2、从图中得到不同压力相对应的光强,从而得到光强随压力的变化规律。关键词:光纤压力传感器,回音壁模式,光学微球,谐振腔DESIGN AND EXPERIMENTAL RESEARCH OF THE REFRACTIVE INDEX OF THE OFTICAL FIBER SENSOR BASED ON THE EVANESCENT FIELDAbstract In recent years, the sensor toward the delicate, sensitive, adaptable and intelligent direction of development,and whisp

3、ering gallery modes with high Q value, small size, the advantages of easy preparation, attracting more and more people added to the study of the whispering gallery mode micro-cavities.The basic principle of this paper sensor design based on whispering gallery mode optical fiber pressure sensor, a br

4、oadband light source, the coupler used in the experiment, the optical spectrometer and homemade microspheres.Under pressure is applied to the optical microsphere type, corresponding to the spectrum analyzer measured spectrum is also changed, and the pressure is gradually increased at equal intervals

5、.Spectrum analyzer data measured by Origin and drawing software for data processing, resulting interferogram with pressure variation.Analysis of the experimental results, we selected the Mo some wavelength spectra, different pressures corresponding to the light intensity from the figure, resulting i

6、n the variation of light intensity with pressureKEY WORDS: Fiber optic pressure sensor, WGM, Optical microspheres, resonant cavity 21目 录前 言1第1章 光纤压力传感器的介绍31.1 光纤传感器的原理3 1.2光纤压力传感器4第2章 微球回音壁模式的理论分析62.1 光学微球腔的介绍6 2.2 回音壁模式的应用8第3章 基于回音壁模式的的光纤压力传感器的设计及测试103.1 光学微球腔的制备10 3.2 实验装置及实验过程11第4章 实验结果及分析134.1 实

7、验结果13 4.2 数据分析15结 论15参考文献16致谢17附录17 前 言 随着信息技术的快速发展,传感器技术作为高新信息技术,其重要作用日益显著。早在20世纪80年代,美国就认为世界已进入传感器时代,我国也将传感器技术列为国家“七五”、“八五”重点科技攻关项目,许多国家也同样重视传感器技术。光纤传感器是世界上兴起的一种新型传感技术,是科技工作者应用光纤通讯和集成光学技术成就并加以发展的结晶。光纤传感器被列入现代传感器技术发展方向之一,并在理论和应用上投入大量的研究工作,尤其是近几年,它的发展异常迅速,显现出巨大的开发潜力,受到一些工业先进国家政府和研究单位的高度重视。随着光纤技术与相关光

8、电子元器件的发展,光纤传感技术正逐步成为继光纤通信产业之后又一大光纤应用技术产业。光子技术是光子学与电子学结合而成的技术,作为信息载体的光子在速度容量、空间容量、响应速度、并行处理能力等方面具有电子所不具备的优越性。近三十年来,以光子传输与处理技术为基础的光纤传感器应用技术逐渐成为各国研究的热点,该技术属于光子技术的研究与应用范围,是光纤、半导体器件和光通信等技术结合发展的产物。随着光纤传感技术的不断发展,光纤传感作为传感技术中一个重要分支正不断为工业、农业、交通、能源、医疗卫生、科学技术以及军事技术的信息化提供越来越多的服务,并愈来愈为人们所认识与接受。例如在医学领域,利用光纤压力传感器进行

9、颅压、胸压、腹压等的测量可以最大限度地减小患者手术的风险;而在进行断层扫描(CT)及核磁共振(NMR)时,它依旧可以准确地测量病患部位的压力,突出了其抗电磁干扰的特性。目前临床上应用的压力传感器主要用来测量血管内的血压、颅内压、心内压、膀胱和尿道压力等1。另外,光纤传感技术也是未来地震监测的发展方向。历史表明中国是一个地震频发的国家,地震给人们带来的危害是众所周知的。地震学是一门观测学科,地震观测技术是地震学领域重要的研究内容。地震发生前常会出现各种异常现象(地震前兆),它与地震的孕育和发生相关联。但目前地震前兆观测仪器(如应变仪、断层 蠕变仪、伸缩仪、倾斜仪等)中都是广泛使用电学测量方法,这

10、使得观测仪在实际应用中有许多缺点。例如零点漂移不易消除、易受电磁环境干扰、灵敏度低、动态范围小、漏电、怕雷击、供电困难、硬件系统比较脆弱等问题,这限制了地震前兆观测技术的发展。由于光纤传感技术是以光纤为媒质、光为载体,是一种全光测量方法,具有本质无源、体积小质量轻、高精度、抗电磁干扰、抗雷击、不怕漏水漏电、耐腐蚀、耐高温高压、不存在零漂问题、便于组网以及长距离传输等一系列独特优势,因此利用光纤传感器进行地震前兆观测是一种独具优势的地震监测新手段。近年来,随着光纤传感技术的快速发展,我们可以将光纤传感器埋入温度高达200以上的地层深处,用于地形变、地震波、水文地球化学、地磁等物理量的长期监测,可

11、测距离达数百公里,并且易于组建成区域性的地震监测网络9。由此看来,设计并研究光纤压力传感器具有相当重要的意义和价值。光纤传感器与以电做信号载体的传感器相比具有许多优点:1.良好的电绝缘性和抗电磁干扰性;2.光纤信息传输损耗低;3.具有极高的灵敏度;4.光纤可以任意弯曲,柔性极好;5.光纤耐水浸、耐高温、腐蚀等。另外,在各式各样的光子学微结构中,微球形结构近年来逐渐成为人们的研究热点。若将光学微球置于低于微腔介质折射率的媒质中,光在微腔内以大于临界角的方向传播时会在微腔表面不断发生全反射。微球将光约束在“赤道”平面附近并沿大圆绕行。当绕行的光波满足一定的相位匹配时,就可以互相叠加增强,形成一种特

12、殊的光传播模式,这种特殊传播模式被称为回音壁模式(WGM)。光学微腔是具有极高品质因数和极低模式体积的光学介电谐振器,由于回音壁模 式的高品质因数和可集成的特性使其在集成光学器件应用中有巨大的潜力。回音壁模式与传统的法布里-珀罗(FP)腔相比也有许多的优点。由于法布里-珀罗(FP)腔体尺寸较大,不易于集成,并且高反射率的腔镜造价高昂且需要复杂的稳定装置,这些都严重限制了FP腔的应用。而全固态的介质回音壁模式微腔支持非常稳定的高Q 谐振模式,并且具有尺寸小、制备方便的优点,吸引了越来越多的人加入到回音壁模式微腔的研究中来。随着现代微纳加工技术的发展, 以及材料制备手段的进步, 回音壁模式已经在各

13、种不同材料的微腔中实现,包括各种玻璃,聚合物,晶体和半导体等材料,而腔的形状也是多种多样,例如球形,盘形,多边形柱形等,这样使得回音壁模式具有越来越广泛的应用。 在实验过程中,制作一个几百微米的光纤微球腔,根据压力传感器的基本原理,设计了基于回音壁模式的光纤压力传感器来研究光强随着压力改变的变化规 律。第一章 光纤压力传感器的介绍1.1 光纤传感器的原理光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。光纤具有许多优良特性,光纤工作频带宽,动态范围大,适合于遥测遥控,是一种优良的低损耗传输线;在一定条件下,光纤特别容易接受被测量或场的加载,是一种优良的敏

14、感元件;光纤本身不带电,体积小,质量轻,易弯曲,抗电磁干扰,抗辐射性能好,特别适合于易燃、易爆。空问受严格限制及强电磁干扰等恶劣环境下使用。因此,光纤传感器技术一问世就受到极大重视,几乎在各个领域得到研究与应用,成为传感技术的先导,推动着传感技术蓬勃发展。光纤传感技术是伴随着光导纤维及光纤通信技术的发展而迅速发展起来的一种以光为载体,光纤为煤质,感知和传输外界信号的新型传感技术。它具有抗电磁干扰、电绝缘性好、灵敏度高、重量轻、能在恶劣环境下工作等一系列优点, 因而具有广泛的应用前景。目前已有测量温度、压力、位移、加速度、电流等多种物理量的光纤传感器问世。一般的光纤传感系统包括发射部分、传输部分

15、、接收部分。发射部分把待传输的电信号转换成光信号,接收部分把光信号转换成电信号,传输部分把发射部分发出的光传送到接收部分。发射部分的光源产生光信号,它是信息的载波。接收部分的光探测器检测光信号,并将它变换为电信号形式。光纤传感检测的基本原理就是利用光纤中的光波参数(如光强、频率、波长、相位以及偏振态等)随外界被测参数的改变而变化的规律,通过测量这些光波参数来实现对外界物理量(如折射率、浓度、温度、应力等)的检测,它是光纤在非通信领域中的重要应用2。光纤传感技术主要应用在光强调制型光纤传感器、光相位调制型光纤传感器、光偏振态调制型光纤传感器、光波长调制型光纤传感器及光频率调制型光纤传感器。从广义上讲,凡是采用了光导纤维的传感器均可称为光纤传感器。其一般形式利用光纤本身的特性或外加敏感元件,将外界待测信号的变化调制成光参数变化,并由光纤传输该信息到光电探测器,通过检测被调制的光参数的变化来检测出待测信号2。 1.2 光纤压力传感器光纤传感器由光源、入射光纤、出射光线、光调制器、光探测器以及解调器组成。其基本原理是当光波在光纤中传输时,表征光波的特征参量(振幅、相位、偏振态、波长等),会由于被测叁量(温度、压力、加速度、电场、磁场等)对光纤的作用而发生变化,从而引起光波的强度、干涉效应、偏振面发生变化,使光

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号