高中数学数列复习 题型归纳 解题方法整理.doc

上传人:cn****1 文档编号:543010361 上传时间:2023-03-15 格式:DOC 页数:17 大小:723.45KB
返回 下载 相关 举报
高中数学数列复习 题型归纳 解题方法整理.doc_第1页
第1页 / 共17页
高中数学数列复习 题型归纳 解题方法整理.doc_第2页
第2页 / 共17页
高中数学数列复习 题型归纳 解题方法整理.doc_第3页
第3页 / 共17页
高中数学数列复习 题型归纳 解题方法整理.doc_第4页
第4页 / 共17页
高中数学数列复习 题型归纳 解题方法整理.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《高中数学数列复习 题型归纳 解题方法整理.doc》由会员分享,可在线阅读,更多相关《高中数学数列复习 题型归纳 解题方法整理.doc(17页珍藏版)》请在金锄头文库上搜索。

1、数列一、 等差数列与等比数列1.基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。2.等差数列与等比数列的联系1)若数列是等差数列,则数列是等比数列,公比为,其中是常数,是的公差。(a0且a1);2)若数列是等比数列,且,则数列是等差数列,公差为,其中是常数且,是的公比。3)若既是等差数列又是等比数列,则是非零常数数列。3.等差与等比数列的比较等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=dn+-d求和公式中项公式A= 推广:2=。推广:性质1若m+n=p+q则 若m+n=p+q,则。2若成A.P(其中)则也为A.

2、P。若成等比数列 (其中),则成等比数列。3 成等差数列。成等比数列。4 , 4、典型例题分析【题型1】 等差数列与等比数列的联系例1 (2010陕西文16)已知an是公差不为零的等差数列,a11,且a1,a3,a9成等比数列.()求数列an的通项;()求数列2an的前n项和Sn.解:()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sm=2+22+23+2n=2n+1-2.小结与拓展:数列是等差数列,则数列是等比数列,公比为,其中是常数,是的公差。(a0且a1).【题型2】 与

3、“前n项和Sn与通项an”、常用求通项公式的结合例2 已知数列an的前三项与数列bn的前三项对应相同,且a12a222a32n1an8n对任意的nN*都成立,数列bn1bn是等差数列求数列an与bn的通项公式。解:a12a222a32n1an8n(nN*) 当n2时,a12a222a32n2an18(n1)(nN*) 得2n1an8,求得an24n,在中令n1,可得a18241,an24n(nN*) 由题意知b18,b24,b32,b2b14,b3b22,数列bn1bn的公差为2(4)2,bn1bn4(n1)22n6,法一(迭代法)bnb1(b2b1)(b3b2)(bnbn1)8(4)(2)(

4、2n8) n27n14(nN*)法二(累加法)即bnbn12n8,bn1bn22n10,b3b22,b2b14,b18,相加得bn8(4)(2)(2n8)8n27n14(nN*)小结与拓展:1)在数列an中,前n项和Sn与通项an的关系为:.是重要考点;2)韦达定理应引起重视;3)迭代法、累加法及累乘法是求数列通项公式的常用方法。【题型3】 中项公式与最值(数列具有函数的性质)例3 (2009汕头一模)在等比数列an中,an0 (nN),公比q(0,1),且a1a5 + 2a3a5 +a 2a825,a3与as的等比中项为2。(1)求数列an的通项公式;(2)设bnlog2 an,数列bn的前

5、n项和为Sn当最大时,求n的值。解:(1)因为a1a5 + 2a3a5 +a 2a825,所以, + 2a3a5 +25 又ano,a3a55 又a3与a5的等比中项为2,所以,a3a54而q(0,1),所以,a3a5,所以,a34,a51,a116,所以, (2)bnlog2 an5n,所以,bn1bn1,所以,bn是以4为首项,1为公差的等差数列。所以, 所以,当n8时,0,当n9时,0,n9时,0,当n8或9时,最大。小结与拓展:1)利用配方法、单调性法求数列的最值;2)等差中项与等比中项。二、 数列的前n项和1.前n项和公式Sn的定义:Sn=a1+a2+an。2.数列求和的方法(1)(

6、1)公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比数列的数列;4)常用公式:;。(2)分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。(3)倒序相加法:如果一个数列an,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法。如:等差数列的前n项和即是用此法推导的。(4)裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于其中是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。如:1)和(其中等差)可裂项为:;2)。(

7、根式在分母上时可考虑利用分母有理化,因式相消 求和)常见裂项公式:(1);(2);(3);(4)(5)常见放缩公式:.3.典型例题分析【题型1】 公式法例1 等比数列的前项和S2p,则_.解:1)当n=1时,;2)当时,。 因为数列为等比数列,所以从而等比数列为首项为1,公比为2的等比数列。故等比数列为首项为1,公比为的等比数列。小结与拓展:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比数列的数列;4)常用公式:(见知识点部分)。5)等比数列的性质:若数列为等比数列,则数列及也为等比数列,首项分别为、,公比分别为、。【题型2】 分组求和法例2 (2010年丰台期末18)数列

8、中,且点在函数的图象上.()求数列的通项公式;()在数列中,依次抽取第3,4,6,项,组成新数列,试求数列的通项及前项和.解:()点在函数的图象上,。,即数列是以为首项,2为公差的等差数列,。()依题意知:=.小结与拓展:把数列的每一项分成多个项,再把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。【题型3】 裂项相消法例3 (2010年东城二模19改编)已知数列的前项和为,设()证明数列是等比数列;()数列满足,求。证明:()由于, 当时, 得 所以 又, 所以因为,且,所以所以故数列是首项为,公比为的等比数列 解:()由()可知,则() 小结与拓展:裂项相

9、消法是把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。它适用于其中是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。如:1)和(其中等差)可裂项为:;2)。(根式在分母上时可考虑利用分母有理化,因式相消求和)4.数列求和的方法(2)(5)错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。如:等比数列的前n项和就是用此法推导的. (6)累加(乘)法(7)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an(1)nf(n)类型,可采用两项合并求。(8)其它方法:归

10、纳、猜想、证明;周期数列的求和等等。5.典型例题分析【题型4】 错位相减法例4 求数列前n项的和.解:由题可知的通项是等差数列2n的通项与等比数列的通项之积设 (设制错位)得(错位相减) 【题型5】 并项求和法例5 求10029929829722212解:10029929829722212(100 99)(9897)(21)5050.【题型6】 累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等例6 求之和.解:由于 (找通项及特征)(分组求和)6.归纳与总结以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式

11、以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。三、 数列的通项公式1.数列的通项公式一个数列an的 与 之间的函数关系,如果可用一个公式anf(n)来表示,我们就把这个公式叫做这个数列的通项公式2.通项公式的求法(1)(1)定义法与观察法(合情推理:不完全归纳法):直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目;有的数列可以根据前几项观察出通项公式。(2)公式法:在数列an中,前n项和Sn与通项an的关系为: (数列的前n项的和为).(3)周期数列由递推式计算出前几项,寻找周期。(4)由递推式求数列通项类型1

12、 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。类型2 (1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。(2)由和确定的递推数列的通项可如下求得:由已知递推式有, ,依次向前代入,得,这就是叠(迭)代法的基本模式。类型3 递推公式为(其中p,q均为常数,)。解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。3.典型例题分析【题型1】 周期数列例1 若数列满足,若,则=_。答案:。小结与拓展:由递推式计算出前几项,寻找周期。【题型2】 递推公式为,求通项例2 已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,小结与

13、拓展:在运用累加法时,要特别注意项数,计算时项数容易出错.【题型3】 递推公式为,求通项例3 已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,小结与拓展:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.【题型4】 递推公式为(其中p,q均为常数,),求通项例4 在数列中,当时,有,求的通项公式。解法1:设,即有,对比,得,于是得,数列是以为首项,以3为公比的等比数列,所以有。解法2:由已知递推式,得,上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。所以,即,所以。小结与拓展:此类数列解决的办法是将其构造成一个新的等比数列,再利用等比数列的性质进行求解,构造的办法有两种,一是待定系数法构造,设,展开整理,比较系数有,所以,所以是等比数列,公比为,首项为。二是用做差法直接构造,两式相减有,所以是公比为的等比数列。也可用“归纳猜想证明”法来求,这也是近年高考考得很多的一种题型.4.通项公式的求法(2)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号