自考复习专题线性代数第2章

上传人:cl****1 文档编号:542907844 上传时间:2023-06-28 格式:DOC 页数:48 大小:658.50KB
返回 下载 相关 举报
自考复习专题线性代数第2章_第1页
第1页 / 共48页
自考复习专题线性代数第2章_第2页
第2页 / 共48页
自考复习专题线性代数第2章_第3页
第3页 / 共48页
自考复习专题线性代数第2章_第4页
第4页 / 共48页
自考复习专题线性代数第2章_第5页
第5页 / 共48页
点击查看更多>>
资源描述

《自考复习专题线性代数第2章》由会员分享,可在线阅读,更多相关《自考复习专题线性代数第2章(48页珍藏版)》请在金锄头文库上搜索。

1、第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。主要讨论矩阵的各种运算的概念和性质。在自学考试中,所占比例是各章之最。按考试大纲的规定,第二章占26分左右。而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。以改版后的三次考试为例,看下表按考试大纲所占分数07.407.707.10直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。2.1线性方程组和矩阵的定义2.1.1线性方程组n元线性方程组的一般形式为

2、 特别若,称这样的方程组为齐次方程组。称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组 【答疑编号12020102】2.1.2矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表 为mn阶矩阵,也可记为为矩阵A第i行,第j列的元素。 注意:矩阵和行列式的区别。二、几类特殊的矩阵1.所

3、有元素都为零的矩阵称为零矩阵,记为O。例如都是零矩阵。2.若A的行数m=1,则称 为行矩阵,也称为n维行向量。若A的列数n=1,则称为列矩阵,也称为m维列向量。3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。如n个未知数,n个方程的线性方程组的系数矩阵。4.称n阶方阵为n阶对角阵。特别若上述对角阵中,称矩阵为数量矩阵,如果其中=1,上述数量阵为,称为n阶单位阵。5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。2.2矩阵的运算 这节介绍(1)矩阵运算的定义,特别要注意,矩阵运算有意义的充分必要条件;(2)矩阵运算的性质,要注意矩阵运算与数的运算性质的异同,重点是矩阵运算性

4、质与数的运算性质的差别。2.2.1矩阵的相等为建立矩阵运算的概念,先说明什么叫两个矩阵相等。定义2.2.1如果矩阵A,的阶数相同,即行数、列数都相同,则称矩阵与B同型;若A与B同型,且对应元素都相等,则称矩阵A与B相等,记为A=B。请注意区别两个矩阵相等和两个行列式相等例如 虽然行列式有但矩阵;。2.2.2矩阵的加减法 定义2.2.2 设A与B都是mn阶矩阵(即A与B同型),则矩阵A与B可以相加(相减),其和(差)定义为mn阶矩阵 例1设求A+B、A-B。【答疑编号12020103】例2则A与B不能相加(减),或说AB无意义。 加法运算的性质设A,B,C都是mn阶矩阵,O是mn阶零矩阵,则1.

5、交换律 A+B=B+A。2.结合律 (A+B)+C=A+(B+C)。3.负矩阵 对于任意的mn阶矩阵定义,显然A+(-A)=O;A-B=A+(-B)。2.2.3数乘运算定义2.2.3 数与矩阵A的乘积记作A或A,定义为 例3 设,求3A。 【答疑编号12020104】解例4 设,求3A-2B。 【答疑编号12020105】例5 已知,求2A-3B。 【答疑编号12020106】数乘运算满足:1.1A=A2.设k,l是数,A是矩阵,则k(lA)=(kl)A3.分配律 k(A+B)=Ka+kB;(k+l)A=kA+lA例6 已知,且A+2X=B,求X。2.2.4矩阵的乘法先介绍矩阵乘法的定义,后面

6、再介绍为什么这样定义乘法。一、定义定义2.2.4 设矩阵,(注意:A的列数=B的行数)。定义A与B的乘积为一个mn阶矩阵,其中(i=1,2,m,j=1,2, n)可见,矩阵A,B可以相乘的充分必要条件是A的列数B的行数,乘积矩阵C=AB的行数=A的行数;其列数=B的列数。例如则A,B可以相乘,其乘积其中例7设矩阵【答疑编号12020201】问BA有意义吗?无意义。因为第一个矩阵的列数不等于第二矩阵的行数,所以BA无意义。例8(1)设矩阵(2)求AB;BA【答疑编号12020202】此例说明 AB,BA虽然都有意义,但两矩阵不同型,当然不相等。例9设矩阵,求AB,BA。【答疑编号12020203

7、】为什么这样定义乘法?考虑线性方程组设,则,于是线性方程组(1)就可以写成矩阵形式AX=b。这表明,应用这种方法定义矩阵乘法,可以把任意线性方程组写成与一元一次方程ax=b完全相同的形式,使整个的讨论变得简单了。二、性质(1)乘法没有交换律,AB不一定等于BA。(2)结合律 (AB)C=A(BC) (3)分配律 (A+B)C=AC+BC;A(B+C)=AB+AC (4)数乘与乘法的结合律k(AB)=(kA)B=A(kB)(5)单位矩阵的作用。另一部分的证明请同学们自己作。但对于某些特殊的矩阵(方阵)满足AB=BA,我们称它们是乘法可交换的,例如n阶方阵A与n阶单位阵就可交换。例10 设矩阵,求

8、出所有与A乘积可交换的矩阵。【答疑编号12020204】2.2.5方阵的幂设A是一个矩阵,何时有意义?当且只当A为n阶方阵时,有意义。这时,对k2定义称为A的k次幂。例11 数学归纳法证明【答疑编号12020301】(2)【答疑编号12020302】对于数,幂的运算有下列性质:(1)同底幂相乘,指数相加。即;(2);(3)对于方阵的幂有下列性质:(1)。对于数,为什么所以对于n阶方阵不一定等于。根据矩阵乘法和方阵幂的性质,数的乘法公式有下面的变化:一般不等于。一般不等于。这些变化的原因就在于矩阵乘法没有交换律。但对于某些特殊的矩阵满足AB=BA,例如n阶方阵A与n阶单位阵就可交换,所以请思考例

9、12 设求。【答疑编号12020303】例13 设,求。【答疑编号12020304】例14 设。【答疑编号12020305】小结 矩阵乘法和数的乘法性质的区别:(1)矩阵乘法没有交换律,由此引出乘法公式:如,不一定等于等公式的变化;(2)对于矩阵:两个非零矩阵的乘积可能为零矩阵;(3)对于方阵,可能可能,(4)不一定等于。2.2.6矩阵的转置一、定义定义2.2.5设。将其行列互换,所得的矩阵记为称它为A的转置,即显然,mn阶矩阵A的转置是nm阶。二、性质1.;2.;3.;现看下面的例例15 设,求;问哪个有意义,若有意义,求它的乘积矩阵。【答疑编号12020306】解没有意义。有意义,且所以一

10、般,则AB是mn阶的。是km阶,为nk阶,故不一定有意义。但 有意义。可以证明4.(反序律)。三、对称阵和反对称阵定义 设A为n阶实方阵。如果满足,则称A为实对称(反对称)阵。例16 为实对称阵;为反对称阵。例17 证明:任意n阶方阵A都可以惟一地分解为一个对称阵和一个反对称阵的和。【答疑编号12020307】例18证明:设A,B都是n阶对称阵,证明AB为对称阵的充分必要条件是AB=BA。 【答疑编号12020308】扩展 改为 设A,B都是n阶反对称阵, 证明AB为对称阵的充分必要条件是AB=BA。 2.2.7方阵的行列式一阶方阵和一阶行列式都是数,但当n2以后,矩阵和行列式是两个不同的概念

11、,矩阵是一个数表,可以是方的也可以是长方的。对于n阶方阵,可以对它取行列式,但行列式已不仅是数表,而它的值是一个数。性质:1.;2.;3.。于是容易看出,虽然AB不一定等于BA,但。例19 证明奇数阶的反对称阵的行列式等于零。【答疑编号12020309】2.2.8方阵多项式任意给定多项式和一个n阶方阵A。定义称f(A)为A的方阵多项式。例20 设求f(A)。【答疑编号12020310】小结1.矩阵各种运算的定义(包括运算有意义的充分必要条件);2.各种运算的性质(特别是与数的运算性质的相同点和不同点,尤其是不同点)作业 p47 习题2.2 1,2,3,4,5,6,7,8,9,10,11,122

12、.3方阵的逆矩阵2.3.1逆矩阵的定义定义2.3.1 设A是一个n阶方阵。若存在一个n阶方阵B使得。则称A是可逆矩阵,也称非奇异阵。并称。若这样的B不存在,则称A不可逆。定理2.3.1 可逆矩阵A的逆矩阵是惟一的。证 设都是A的逆矩阵。则。例1 ,验证A可逆,且。【答疑编号12020401】只要看容易看出,这时B也可逆,且。例2 不可逆。【答疑编号12020402】解 设,则。故不可逆。2.3.2n阶方阵可逆的充分必要条件为讨论n阶方阵可逆的充分必要条件,现引入方阵的伴随矩阵的概念定义 设,为的代数余子式,则称 为A的伴随矩阵,记为。下面计算类似地,有。若,有。于是有下面的定理。定理2.3.2 n阶方阵A可逆的充分必要条件是,且当时,。证 充分性已经得证。只要证必要性。设n阶方阵A可逆,据定义知,存在n阶方阵B使得AB=BA=E取行列式得,故,必要性得证。推论 设A,B均为n阶方阵,并且满足AB=E,则A,B都可逆,且。推论的意义是,不必验证两个乘积AB,BA,而只要验证一个即可。证 因为 AB=E,故,所以。故A,B都可逆。由 AB=E 两边左(右)乘,得,于是有。2.3.3可逆矩阵的基本性质设A,B为同阶可逆矩阵。常数k0。则1.可逆,且。2.AB可逆,。3. 也可逆,且。4.kA也可逆,且。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号