《宁夏银川市三校2023学年高三第四次模拟考试数学试卷(含解析).doc》由会员分享,可在线阅读,更多相关《宁夏银川市三校2023学年高三第四次模拟考试数学试卷(含解析).doc(19页珍藏版)》请在金锄头文库上搜索。
1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD2已知函数,若对任意的总有恒成立,记的最小值为,则最大值为( )A1BCD3对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A
2、或BC或D4设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )ABC5D65第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD6某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD7已知函数,的零点分别为,则( )ABCD8的展开式中的系数为( )A30B40C40D509已知抛物线的焦
3、点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )ABCD10定义运算,则函数的图象是( )ABCD11已知,则的最小值为( )ABCD12已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知函数图象上一点处的切线方程为,则_14已知多项式满足,则_,_15在等差数列()中,若,则的值是_.16已知,是平面向量,是单位向量.若,且,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分
4、)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值18(12分)已知函数(,),.()讨论的单调性;()若对任意的,恒成立,求实数的取值范围.19(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.20(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程
5、;若时,求实数;试问的值是否与的大小无关,并证明你的结论21(12分)已知函数()当时,讨论函数的单调区间;()若对任意的和恒成立,求实数的取值范围22(10分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()设直线与曲线交于,两点,求;()若点为曲线上任意一点,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【题目详解】
6、将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【答案点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题2、C【答案解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【题目详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,故令,得 当时,当,当时,故选:C.【答案点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算
7、能力,属于难题.3、C【答案解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【题目详解】由得,.令,则,令,解得,所以当时,则在内单调递增;当时,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【答案点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.4、A【答案解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式
8、进行求解即可.【题目详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【答案点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.5、A【答案解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【题目详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙
9、分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【答案点睛】本题考查组合的应用和概率的计算,属于基础题.6、D【答案解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【答案点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.7、C【答案解析】转化函数,的零点为与,的交点,数形结合,即得解.【题目详解】函数,的零点,即为与,的交点,作出与,的图象,如图所示,可知故选:C【答案点睛】本题考查了数形
10、结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.8、C【答案解析】先写出的通项公式,再根据的产生过程,即可求得.【题目详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【答案点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.9、A【答案解析】由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【题目详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,抛物线的准线被双曲线截得的线段长
11、为,又,则双曲线的离心率为故选:【答案点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长10、A【答案解析】由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.11、B【答案解析】 ,选B12、A【答案解析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【题目详解】当m平面时,若l”则“lm”成立,即充分性成立,若lm,则l或l,即必要性不成立,则“l”是“lm”充分不必要条件,故选:A.【答案点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题
12、二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】求出导函数,由切线方程得切线斜率和切点坐标,从而可求得【题目详解】由题意,函数图象在点处的切线方程为,解得,故答案为:1【答案点睛】本题考查导数的几何意义,求出导函数是解题基础,14、 【答案解析】多项式 满足令,得,则该多项式的一次项系数为令,得故答案为5,7215、-15【答案解析】是等差数列,则有,可得的值,再由可得,计算即得.【题目详解】数列是等差数列,又,故.故答案为:【答案点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.16、【答案解析】先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得
13、解【题目详解】由是单位向量若,设,则,又,则,则,则,又,所以,(当或时取等)即的取值范围是,故答案为:,【答案点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间,单调递减区间;详见解析;(2).【答案解析】(1)求导可得,再分别求解与的解集,结合定义域分析函数的单调区间即可.根据(1)中的结论,求出的表达式,再分与两种情况,结合函数的单调性分析的范围即可.(2)求导分析的单调性,再结合单调性,设去绝对值化简可得,再构造函数,根据函数的单调性与恒成立问题可知,再换元表达求解最大值即可.【题目详解】解:,由可得或,由可得,故函数的单调递增区间,单调递减区间;,或,若,因为,故,由知在上单调递增,若由可得x1,因为,所以,由在上单调递增,综上时,在上单调递减,不妨设由(1)在上单调递减,由,可得,所以, 令,可得单调递减,所以在上恒成立,即在上恒成立,即,所以, ,所以的最大值【答案点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于