湿法钙基烟气脱硫吸收塔设计报告书

上传人:博****1 文档编号:542525770 上传时间:2022-08-03 格式:DOC 页数:24 大小:329.01KB
返回 下载 相关 举报
湿法钙基烟气脱硫吸收塔设计报告书_第1页
第1页 / 共24页
湿法钙基烟气脱硫吸收塔设计报告书_第2页
第2页 / 共24页
湿法钙基烟气脱硫吸收塔设计报告书_第3页
第3页 / 共24页
湿法钙基烟气脱硫吸收塔设计报告书_第4页
第4页 / 共24页
湿法钙基烟气脱硫吸收塔设计报告书_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《湿法钙基烟气脱硫吸收塔设计报告书》由会员分享,可在线阅读,更多相关《湿法钙基烟气脱硫吸收塔设计报告书(24页珍藏版)》请在金锄头文库上搜索。

1、.课程设计任务总概设计任务与目的任务:完成某电厂湿法钙基烟气脱硫工艺流程中吸收塔设计。目的:通过该设计,使学生能够综合运用课堂上学过的理论知识和专业知识。以巩固和深化课程内容;熟悉使用规范、设计手册和查阅参考资料,培养学生分析问题、解决问题和独立工作的能力;进一步提高学生计算、绘图和编写说明书的基本技能。设计内容和步骤某电厂地处东南季风区,四季分明,温暖湿润,春季温暖雨连绵,夏季炎热雨量大,秋季凉爽干燥,冬季低温,少雨雪。根据当地气象台多年气象资料统计,其特征值如下:累年平均气压: 1011.0hPa累年最高气压: 1038.9hPa累年最低气压: 986.6hPa累年平均气温: 17.6极端

2、最高气温: 40.9极端最低气温: -9.9厂址处全年北(N)风出现频率为20.0%,西北 (NW)风 出现频率为14.7%,西(W)风出现频率13.1%,南(S)风出现频率6.0%,东北(WE)风出现频率9.6%,东(E)风出现频率8.3%,东南(SE)风出现频率8.0%,西南(SW)风出现频率7.2%,静风出现频率为13.1%。电厂有4台60MW的发电机组,占地面积25000m2。电厂所用煤的组成成分:C 70.7%;灰分 12.1%;S 2.7%;H 3.2%;水分 9.0%; O 2.3%,每小时煤的用量90t,采用石灰石石膏脱硫工艺流程,脱硫率要求为85-90%。1. 根据上述资料,

3、确定烟气量(锅炉燃烧的过剩空气系数取a=1.05-1.2,锅炉每小时用煤90t)、烟气中SO2浓度和每天石灰石(其纯度为90%)的消耗量(设系统钙硫比为1.1-1.2时,脱硫率达到85-90%);(过剩空气系数系数、钙硫比和脱硫率在给的范围内自定,希望不要雷同)2. 计算和设计各处理构筑物。(1)吸收喷淋塔确定吸收塔的类型和结构尺寸,塔内气流速度、液气比以及停留时间;确定吸收塔的内部构件,包括喷嘴的选择、循环浆液喷淋层数和除雾器层数等; 绘制1:501:200的吸收塔草图,标上各部分尺寸;要有详细的技术和说明(2)总平面图设计根据前述条件,绘制湿法烟气脱硫电厂的平面布置图(1:2001:200

4、0):包括处理构筑物的平面布置及输配水管线的布置。生产性辅助建筑物(鼓风机房、浆液泵房、配电间、锅炉房、机修间、化验室、仓库等),环保设施(脱硫设备、污水处理厂及灰场等)、以及生活福利建筑(办公室、车库、宿舍、食堂、传达室等)的布置。具体要求: 平面布置应尽量紧凑,在规定的范围内结合远期发展布置,并应考虑施工上的方便。平面布置中应考虑事故排除和超越管。厂内应有道路通向各构筑物,以便运输;合理布置上、下水管、空气管、蒸气管、电缆等管线。厂内应充分绿化,以改善卫生条件和美化环境。4台发电机组以及与其配套的实施在图中均要绘出。目录一、钙基湿法脱硫工艺11工艺简介12化学反应过程23石灰石湿法烟气脱硫

5、装置24 FGD运行主要控制参数5二、工艺设计计算71基础资料处理72烟气量计算73吸收塔设计计算94配套设备选型13三、结垢问题及解决办法141脱硫系统中常出现的结垢及固体堆积现象142结垢的原因153结垢的防止措施16四、总平面图设计171 一般规定172 总平面布置183 交通运输184 管线布置19五、课程设计体会19六、致谢20七、附录201工艺设计主要依据的标准和规范202附图21八、参考文献21.一、钙基湿法脱硫工艺1工艺简介石灰石石膏湿法烟气脱硫工艺是目前世界上治理工业烟气脱硫工艺中应用最广泛的一种脱硫技术。目前,其工艺技术完善、运行稳定、脱硫效率高、单塔出力大,脱硫剂石灰石地

6、理分布广,价格低廉,特别适合工业规模的应用。石灰石石膏湿法烟气脱硫工艺流程图如图1所示。从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾器除去水雾后,又经GGH升温至大于75,再进入净烟道经烟囱排放。脱硫剂石灰石粉则由磨石粉厂破碎磨细成粉状,通过制浆系统制成一定浓度的石灰石浆液,运行时根据FGD处理的烟气量和SO2的浓度,由循环泵不断地把新鲜浆液补充到吸收塔内。当塔内石膏浆液达到一定浓度后由外排泵排出,经一级旋流、二级真空皮带脱水后,得到含水率低于10%的石膏,装车外运。2化学反应过程脱硫塔中烟气

7、和石灰石脱硫剂进行着复杂的反应过程。烟气中的主要有害成分有SO2、HCl、NOx等;石灰石浆液主要由Ca2+、Mg2+等离子组成。它们在溶液中相互作用,生成多种反应产物。烟气中的SO2与石灰石浆液经过一系列的化学反应,最后生成石膏。湿法烟气脱硫吸收过程多采用双膜理论模型解释。SO2的吸收过程以膜扩散的方式进行。在气液相间的物质迁移主要是分子扩散的结果,物质迁移方向与相界面垂直。化学反应可以简化为下列过程。(1). SO2的吸收SO2+H2OH2SO3 H2SO3D+D2+ SO32-(2). 石灰石的溶解CaCO3 DCa2+ +CO32-(3). 中和反应Ca2+ + CO32-+2+CaS

8、O3+CO2+ H2O(4). 氧化反应CaSO3+1/2O2CaSO4(5). 亚硫酸钙结晶CaSO3+1/2 H2OCaSO31/2 H2O(6). 硫酸钙结晶CaSO4 +2 H2O CaSO42 H2O3石灰石湿法烟气脱硫装置典型的石灰石湿法脱硫系统从功能上可以分为烟气系统、石灰石浆液制备系统、吸收塔系统、石膏脱水系统、废水处理系统、公用系统和事故浆液排放系统。(1). 烟气系统烟气系统通常包括一台单独的增压风机、一台气气换热器和电厂现有烟囱。在增压风机上游和气气换热器再热侧系统出口下游都设有双百叶窗隔离挡板。在现有旁路烟道上亦安装有两个双百叶窗旁路挡板,这些挡板的开度可以随烟气流量的

9、变化进行调节。每个烟气挡板可以配置两台密封风机,以防止烟气泄漏。GGH利用未脱硫的热烟气(一般130150)加热已脱硫的洁净烟气(一般4655),一般加热到80左右,然后排放,以避免低温湿烟气腐蚀烟道、烟囱内壁,并可提高烟气抬升高度。在烟气离开吸收塔前,会通过一个两级除雾器,以除去烟囱中携带的细小液滴。沉淀在除雾器上的颗粒不利于烟气流经吸收塔,会影响塔内压降和烟气流向分布。为了防止固体颗粒积聚在除雾器上,需定期对除雾器进行冲洗。除雾器设有冲洗水系统,工艺水从喷嘴喷出冲洗除雾器。(2). 石灰石浆液制备系统石灰石料应密切主要其水分含量,进入石灰石粉制备系统磨粉机地入磨物料的表面水分一般小于1%,

10、否则就会严重恶化操作,甚至造成糊磨、堵塞。同时 应主要氯化物、氟化物和煤灰等杂质不要混入石灰石料中,以免影响脱硫系统的正常运行和脱硫石膏的品质。石灰石浆液制备时,成品分经仓底的两套叶轮给料机输送到石灰石浆液池,工业水通过水泵和调节阀门注入石灰石浆液池,调节石灰石浆液的密度至1230kg/m3(含固量30%)。在石灰石浆液泵的出口管道设有密度监测点,从而保证30%的石灰石浆液的制备和供应。配置合格的石灰石浆液通过石灰石浆液泵输送到吸收塔下部浆液槽,根据烟气负荷、脱硫塔烟气入口的SO2浓度和PH值来控制喷入吸收塔的浆液量,剩余部分返回浆液池。为了防止结块和堵塞,要使浆液不断流动循环。(3). 吸收

11、塔系统吸收塔是烟气脱硫系统的核心装置,要求气液接触面积大,其他的吸收反应良好,压力损失小,并且适用于大容量烟气处理。进入吸收塔的热烟气经过逆向喷淋浆液的冷却、洗涤,烟气中的SO2与浆液进行吸收反应生成亚硫酸氢根(HSO3-)。HSO3-被鼓入的空气氧化为硫酸根(SO42-),SO42-与浆液中的钙离子(Ca2+)反应生成硫酸钙(CaSO4),CaSO4进一步结晶为石膏(CaSO42 H2O)。同时烟气中的Cl、F和灰尘等大多数杂质也在吸收塔中被去除。含有石膏、灰尘和杂质的吸收剂浆液的一部分被排入石膏脱水系统。吸收塔中装有水冲洗系统,将定期进行冲洗,以防止雾滴中的石膏、灰尘和其他物质堵塞元件。吸

12、收塔主要有喷淋塔、填料塔、液柱塔和鼓泡塔四种类型,将在下一章详细讨论。(4). 石膏脱水系统在吸收塔浆液槽中石膏不断产生,为了使浆液密度保持在设定的运行范围内,将石膏浆液(15%20%固体含量)通过石膏浆液泵打入脱水站。该站包括一个水力旋流器及浆液分配器,在这里将石膏浆液中的水予以脱除,使底流石膏固体含量达到50%。在水力旋流器中,石膏浆液流进一个圆柱箱中,并由此流到敞开的各个旋流子中,在此处根据入口压力的大小,可将石膏输送至旋流器的底流,将滤液送入石膏水力旋流器上部的溢流箱内。底流的石膏被送至真空皮带过滤机进一步脱水至含水小于10%。溢流含3%5%的细小固体微粒在重力作用下流入滤液箱,最终返

13、回到吸收塔。旋流器的溢流被输送到废水旋流站进一步分离处理。(5). 废水处理系统在湿式石灰石/石膏FGD工艺中,由于烟气中氯化物的溶解提高了脱硫吸收液中氯离子的浓度,不可避免地要产生一定量废水。氯离子浓度的增高会引起脱硫率的下降和CaSO4结垢倾向的增大,并对副产品石膏的品质产生影响。FGD装置的废水主要来自石膏脱水系统的旋流器溢流液、真空皮带机的滤液或冲洗水。废水处理的工艺大致分为中和、脱重金属、絮凝、浓缩、澄清、污泥处理几部分。中和是采用Ca(OH)2作为中和剂加入脱硫废水中,一方面可以中和水的酸性,另外还可以脱除F-,并使部分重金属沉淀下来。接下来向废液中加入有机硫化物,进一步脱除重金属

14、离子。絮凝的作用是通过添加絮凝剂去除上工段中过剩的硫化物,加速废水中悬浮物的沉降。絮凝后的废水进入澄清池时进行浓缩分离。浓缩后的污泥一部分经脱水后抛弃,一部分返回中和池或絮凝池,以提高絮凝池的固体含量,加速絮凝过程。澄清池的溢流则进入后处理水箱,用稀盐酸调节PH后排放。(6). 公用系统公用系统由工艺水系统、工业水系统、冷却水系统和压缩空气系统等子系统构成,为脱硫系统提供各类用水和控制用气。FGD的工艺水一般来自电厂循环水,并输送至工艺水箱中。工艺水由工艺水泵从工艺水箱输送到各用水点。FGD装置运行时,由于烟气携带、废水排放和石膏携带水而造成水损失。工艺水由除雾器冲洗水泵输送到除雾器,冲洗除雾

15、器,同时为吸收塔提供补充用水,以维持吸收塔内的正常液位。此外,各设备的冲洗、灌注、密封和冷却等用水也采用工艺水。FGD冷却水主要用户有增压风机电机、氧化风机电机、循环浆液泵电机、磨机主轴承、减速器电机,此外,部分冷却水还用于氧化空气增湿冷却。FGD的工业水一般来自电厂补充水,并输送至工业水箱中。(7). 事故浆液排放系统浆液排放系统包括事故浆液储罐系统和地坑系统。当FGD装置大修或发生故障需要排空FGD装置内浆液时,塔内浆液由浆液排放泵排至事故浆液箱直至泵入口低液位跳闸,其余浆液依靠重力自流至吸收塔的排放坑,再由地坑泵打入事故浆液储罐。事故浆液储罐用于临时储存吸收塔内的浆液。地坑系统有吸收塔区地坑、石灰石浆液制备系统地坑和石膏脱水地坑,用于储存FGD装置的各类浆液,同时还具有收集、输送或储存设备运行、运行故障、检验、取样、冲洗、清洗过程或渗漏而产生的浆液。主要设备包括搅拌器和浆液泵。4 FGD运行主要控制参数FGD系统在正常运行中,运行人员应该按照表1来控制FGD系统的主要参数。表1 FGD主要控制参数主要控制参

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号