《非球曲面的超精密加工工艺及加工系统的研究说明书.doc》由会员分享,可在线阅读,更多相关《非球曲面的超精密加工工艺及加工系统的研究说明书.doc(42页珍藏版)》请在金锄头文库上搜索。
1、摘 要非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。可广泛应用于各种现代光电子产品,几乎在所有的工程应用领域中,无论是现代国防科技技术领域,还是普通的工业领域都有着广泛的应用前景,开展光学玻璃非球面零件的高精密光学技术研究具有重要的理论意义和现实指导意义。本次设计研究内容为非球曲面的超精密加工系统的研究,非球曲面的超精密加工工艺的研究。重点内容是非球曲面加工超精密磨削装置的设计,主要为砂轮主轴装置的选取,中心高位调机构的设
2、计,各个运动的传动设计以及砂轮运动轨迹的分析。在研究过程中详细的分析了影响零件加工精度的各种主要因素并提出相应的控制措施,尤其是对非球曲面的磨削加工设备进行详细设计,并简要分析了非球曲面加工机床的数控及伺服控制系统等。关键词:非球曲面;超精密加工;微调机构;金刚石砂轮1111AbstractThe aspheric optical parts can get good image quality, good optical system correction of various aberrations, to improve the image quality, and improve th
3、e system ability to identify it to one or several non-spherical spherical optical parts unparalleledparts instead of a number of spherical parts, thus simplifying the instrument structure, reduce costs and reduce instrument weight. Its widely used in many realms, such as national defense, machine ch
4、emical and aviation. Its very useful to develop the grinding theory and important practical significance to study the high precision grinding methods about the optical glass aspheric surface parts.This article discussed in the ultra-precision grinder, the CNC operation program,and the aspheric surfa
5、ce optics parts grinding craft. The center height micro-adjusting mechanism and the drive system. In the process of the research, we analysis it detailed that the main factor influence the process precision of the parts, and make something to solve it, especially for the precision grinding equipment
6、s, and analysis it simplify for the precision machine tool for aspheric surface optics parts and the servo-control system and the other technology. Key words: the aspheric surface; ultra-precision machining; the micro-adjusting mechanism; diamond wheel 目 录摘要I目录III第1章 绪论11.1非球面加工的优点和意义11.2非球曲面研究概述 11
7、.2.1 非球面的定义11.2.2 非球面应用领域21.2.3 非球曲面加工技术近年来发展概况21.2.4 非球曲面加工的发展趋势和研究方向41.3 非球面光学零件材料及其加工方法41.3.1 计算机数控单点金刚石技术(SPDT)51.3.2 超精密磨削技术51.3.3 计算机控制光学表面成型(CCOS)技术51.3.4 光学玻璃模压成型技术61.3.5 光学塑料成型技术61.3.6 其他非球面加工技术61.4非球面精密磨削加工理论61.4.1 微量加工理论71.4.2 脆性材料的延性域磨削8第2章 超精密非球面加工方案选择及误差分析102.1 超精密非球曲面磨床的总体布局102.1.1 空气
8、主轴系统102.1.2 伺服进给系统112.1.3 微位移测量系统112.1.4 中心高微调系统112.1.5 数控系统112.2 非球曲面磨削方案的确定122.2.1加工零件的技术参数132.2.2 非球曲面磨削方案确定132.3 加工误差分析142.3.1 中心高微调机构对零件加工精度的影响152.3.2 在X轴上砂轮安装误差对零件加工精度的影响172.3.3 砂轮半径误差对零件加工精度的影响182.3.4 及综合作用时对零件面形精度的影响19第3章 非球面磨削装置设计213.1 超精密加工的关键技术213.1.1 超精密主轴213.1.2 超精密导轨213.1.3 传动系统223.1.4
9、 超精密刀具223.1.5 超精密加工其他技术233.2 传动系统设计233.2.1 磨削参数的计算233.2.2 导轨的整体设计243.2.3 传动参数的计算253.3 磨削系统设计253.3.1 系统结构设计263.3.1 中心高微调机构设计273.3.2 砂轮主轴的选择28结 论31致 谢32参考文献33CONTENTSAbstractICONTENTSIIICapter 1 Introduction11.1 The meaning of the processing of aspheric surface11.2 The introuduction of the aspheric su
10、rfaces research11.2.1 Definition of aspheric surface11.2.2 Application of aspheric surface21.2.3 The development of aspheric surface in recent years21.2.4 Aspheric pricesssing trends and research directions41.3 The parts material and the processing method41.3.1 Computer-controlled single-point diamo
11、nd technology(SPDT)51.3.2 Ultra-precision grinding technology51.3.3 Computer Controlled Optical Surfacing(CCOS)51.3.4 Optical glass compression molding technology61.3.5Optical plastic molding technology61.3.6 Other processing technology61.4Aspheric surface precision grinding theory61.4.1 Trace proce
12、ssing theory81.4.2 Ductile-regime grinding of brittle materials8Capter 2 Ultra-precision aspheric processing alternatives and error analysis102.1 Ultra precision aspherical surface grinding machine layout102.1.1 Air spindle system102.1.2 Servo feed system112.1.3 Micro-displacement measurement system
13、112.1.4 Center high tuning system112.1.5 Numerical control system112.2 Aspherical surface grinding scheme122.2.1 Processing part of the technical parameters132.2.2 Aspherical surface grinding scheme132.3 Processing error analysis142.3.1 Center high fine-tuning mechanism on the impact of cutting accu
14、racy152.3.2 In the X axis on the wheel on the impact of cutting accuracy172.3.3 Wheel radius error on the part of machining precision182.3.4 Both and on the part 19Capter3 Aspheric tooling design213.1 Ultra-precision machining technology213.1.1 Ultra-precision spindle213.1.2 Ultra-precision guide213
15、.1.3 Drive system223.1.4 Ultra-precision cutter223.1.5 Other technology233.2 Transmission System Designing233.2.1 Grinding parameters233.2.2 The overall design of the Rails243.2.3 Calculation of transmission parameters253.3 Grinding systems design253.3.1 System architecture design263.3.1 Center high micro-adjusting mechanism design273.3.2 Wheel spindle design28Conclusion31Thanks32References33第1章 绪论1.1非球曲面加工的意义和