《江苏专版2020版高考数学一轮复习板块命题点专练十二圆锥曲线文含解析苏教版.docx》由会员分享,可在线阅读,更多相关《江苏专版2020版高考数学一轮复习板块命题点专练十二圆锥曲线文含解析苏教版.docx(11页珍藏版)》请在金锄头文库上搜索。
1、板块命题点专练(十二) 圆锥曲线命题点一椭圆1.(2018浙江高考)已知点P(0,1),椭圆y2m(m1)上两点A,B满足2,则当m_时,点B横坐标的绝对值最大解析:设A(x1,y1),B(x2,y2),由2,得即x12x2,y132y2.因为点A,B在椭圆上,所以解得y2m,所以xm(32y2)2m2m(m5)244,所以当m5时,点B横坐标的绝对值最大答案:52(2016江苏高考)如图,在平面直角坐标系xOy中,F是椭圆1(ab0)的右焦点,直线y与椭圆交于B,C两点,且BFC90,则该椭圆的离心率是_解析:将y代入椭圆的标准方程,得1,所以xa,故B,C.又因为F(c,0),所以,.因为
2、BFC90,所以0,所以20,即c2a2b20,将b2a2c2代入并化简,得a2c2,所以e2,所以e(负值舍去)答案:3(2017江苏高考)如图,在平面直角坐标系xOy中,椭圆E:1(ab0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标解:(1)设椭圆的半焦距为c.因为椭圆E的离心率为,两准线之间的距离为8,所以,8,解得a2,c1,于是b,因此椭圆E的标准方程是1.(2)由(1)知,F1(1,0),
3、F2(1,0)设P(x0,y0),因为P为第一象限的点,故x00,y00.当x01时,l2与l1相交于F1,与题设不符当x01时,直线PF1的斜率为,直线PF2的斜率为.因为l1PF1,l2PF2,所以直线l1的斜率为,直线l2的斜率为,从而直线l1的方程为y(x1),直线l2的方程为y(x1)由,解得xx0,y,所以Q.因为点Q在椭圆上,由对称性,得y0,即xy1或xy1.又点P在椭圆E上,故1.联立解得联立无解因此点P的坐标为.4(2018北京高考)已知椭圆M:1(ab0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k1,求|AB|的
4、最大值;(3)设P(2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C,D和点Q共线,求k.解:(1)由题意得解得a,b1.所以椭圆M的方程为y21.(2)设直线l的方程为yxm,A(x1,y1),B(x2,y2)由得4x26mx3m230,所以x1x2,x1x2.所以|AB| .当m0,即直线l过原点时,|AB|最大,最大值为.(3)设A(x1,y1),B(x2,y2),由题意得x3y3,x3y3.直线PA的方程为y(x2)由得(x12)23yx212yx12y3(x12)20.设C(xC,yC),所以xCx1.所以xCx1.所以yC(xC2).设D(xD,y
5、D),同理得xD,yD.记直线CQ,DQ的斜率分别为kCQ,kDQ,则kCQkDQ4(y1y2x1x2)因为C,D,Q三点共线,所以kCQkDQ0.故y1y2x1x2.所以直线l的斜率k1.5(2017天津高考)已知椭圆1(ab0)的左焦点为F(c,0),右顶点为A,点E的坐标为(0,c), EFA的面积为.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.求直线FP的斜率;求椭圆的方程解:(1)设椭圆的离心率为e.由已知,可得(ca)c.又由b2a2c2,可得2c2
6、aca20,即2e2e10.又因为0e1,解得e.所以椭圆的离心率为.(2)依题意,设直线FP的方程为xmyc(m0),则直线FP的斜率为.由(1)知a2c,可得直线AE的方程为1,即x2y2c0,与直线FP的方程联立,可解得x,y,即点Q的坐标为.由已知|FQ|c,有222,整理得3m24m0,所以m,即直线FP的斜率为.由a2c,可得bc,故椭圆方程可以表示为1.由得直线FP的方程为3x4y3c0,联立消去y,整理得7x26cx13c20,解得xc或x(舍去)因此可得点P,进而可得|FP| ,所以|PQ|FP|FQ|c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和
7、QN都垂直于直线FP.因为QNFP,所以|QN|FQ|tanQFN,所以FQN的面积为|FQ|QN|,同理,FPM的面积等于,由四边形PQNM的面积为3c,得3c,整理得c22c.又由c0,得c2.所以椭圆的方程为1.命题点二双曲线1.(2018江苏高考)在平面直角坐标系xOy中,若双曲线1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为_解析:双曲线的渐近线方程为bxay0,焦点F(c,0)到渐近线的距离db,bc,ac,e2.答案:22(2016江苏高考)在平面直角坐标系xOy中,双曲线1的焦距是_解析:由双曲线的标准方程,知a27,b23,所以c2a2b210,
8、所以c,从而焦距2c2.答案:23(2017江苏高考)在平面直角坐标系xOy中,双曲线y21的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是_解析:由题意得,双曲线的右准线x与两条渐近线yx的交点坐标为.不妨设双曲线的左、右焦点分别为F1,F2,则F1(2,0),F2(2,0),故四边形F1PF2Q的面积是|F1F2|PQ|42.答案:24(2018北京高考)若双曲线1(a0)的离心率为,则a_.解析:由e ,得,a216.a0,a4.答案:45(2018全国卷改编)设F1,F2是双曲线C:1(a0,b0)的左、右焦点,O是坐标原点过F2作C的一条渐近
9、线的垂线,垂足为P.若|PF1|OP|,则C的离心率为_解析:法一:不妨设一条渐近线的方程为yx,则F2到yx的距离db.在RtF2PO中,|F2O|c,所以|PO|a,所以|PF1|a,又|F1O|c,所以在F1PO与RtF2PO中,根据余弦定理得cosPOF1cosPOF2,即3a2c2(a)20,得3a2c2,所以e.法二:如图,过点F1向OP的反向延长线作垂线,垂足为P,连接PF2,由题意可知,四边形PF1PF2为平行四边形,且 PPF2是直角三角形因为|F2P|b,|F2O|c,所以|OP|a.又|PF1|a|F2P|,|PP|2a,所以|F2P|ab,所以ca,所以e.答案:6(2
10、015江苏高考)在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点,若点P到直线xy10的距离大于c恒成立,则实数c的最大值为_解析:所求的c的最大值就是双曲线的一条渐近线xy0与直线xy10的距离,此距离d.答案:命题点三抛物线1.(2017全国卷改编)过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为_解析:法一:由题意,得F(1,0),则直线FM的方程是y(x1)由得x或x3.由M在x轴的上方,得M(3,2),由MNl,得|MN|MF|314.又NMF等于直线FM的倾斜角,即NMF60,因此MNF
11、是边长为4的等边三角形,所以点M到直线NF的距离为42.法二:依题意,得直线FM的倾斜角为60,则|MN|MF|4.又NMF等于直线FM的倾斜角,即NMF60,因此MNF是边长为4的等边三角形,所以点M到直线NF的距离为42.答案:22(2018北京高考)已知直线l过点(1,0)且垂直于x轴,若l被抛物线y24ax截得的线段长为4,则抛物线的焦点坐标为_解析:由题知直线l的方程为x1,则直线与抛物线的交点为(1,2)(a0)又直线被抛物线截得的线段长为4,所以44,即a1.所以抛物线的焦点坐标为(1,0)答案:(1,0)3(2017天津高考)设抛物线y24x的焦点为F,准线为l.已知点C在l上
12、,以C为圆心的圆与y轴的正半轴相切于点A.若FAC120,则圆的方程为_解析:由题意知该圆的半径为1,设圆心坐标为C(1,a)(a0),则A(0,a)又F(1,0),所以(1,0),(1,a),由题意得与的夹角为120,故cos 120,解得a,所以圆的方程为(x1)2(y)21.答案:(x1)2(y)21命题点四圆锥曲线中的综合问题1(2018江苏高考)如图,在平面直角坐标系xOy中,椭圆C过点,焦点为F1(,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.若直线l与椭圆C有且只有一个公共点,求点P的坐标;直线l与椭圆C交于A
13、,B两点若OAB的面积为,求直线l的方程解:(1)因为椭圆C的焦点为F1(,0),F2(,0),可设椭圆C的方程为1(ab0)又点在椭圆C上,所以解得所以椭圆C的方程为y21.因为圆O的直径为F1F2,所以圆O的方程为x2y23.(2)设直线l与圆O相切于点P(x0,y0)(x00,y00),则xy3,所以直线l的方程为y(xx0)y0,即yx.由消去y,得(4xy)x224x0x364y0.(*)因为直线l与椭圆C有且只有一个公共点,所以(24x0)24(4xy)(364y)48y(x2)0.因为x00,y00,所以x0,y01.所以点P的坐标为(,1)因为OAB的面积为,所以ABOP,从而AB.设A(x1,y1),B(x2,y2),由(*)得x1,2,所以AB2(x1x2)2