文档详情

太阳位置计算.doc

工****
实名认证
店铺
DOC
327KB
约14页
文档ID:537737653
太阳位置计算.doc_第1页
1/14

假如给出当前位置的经度、纬度和准确的天文时间,用什么方式计算出太阳当前的位置呢?例如算出类似于方位角和高度角的数据? 实际中使用希腊字符表示经纬度,不过为了输入方便,我改用XYZ表示.X是地方纬度,Y是太阳赤纬,t是时角,z=90度-h高度h,方位角A,则sinh=sinXsinY+cosXcosYcostsinA=cosYsint/coshcosA=(sinXsinh-sinY)/(cosXcosh)具体的可以在网上搜示意图或这本书《天文学新概论》 苏宜 编著 华中理工大学出版社 2000年8月第一版 P52的章节第24章 太阳位置计算[许剑伟 于家里 2008-3-30下午]一、低精度计算:  当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下  设JD是儒略日数,可以用第7章表述的方法计算T为J2000起算的儒略世纪数:    T = (JD-2451545.0)/36525  计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。

  接下来,  太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)  太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3  地球轨道离心率: e = 0.016708617 - 0.000042037*T - 0.0000001236*T^2  太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)  那么,太阳的真黄经是:Θ = Lo + C  真近点角是: v = M + C  日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式  式中的分子部分的值变化十分缓慢它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年  太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。

  要取得Date黄道坐标中太阳的视黄经λ,还应对Θ进行章动修正及光行差修正如果精度要求不高,可用下式修正:    Ω = 125°.04 - 1934°.136*T    λ = Θ - 0°.00569 -0°.00478*sin(Ω)  某此时候,我们需要把太阳黄经转到J2000坐标中,在1900-2100年范围内可利用下式进行: Θ2000 = Θ - 0°.01397*(year-2000)  如果还想取得更高的转换精度(优于0.01度),那么你可以使用第25章的方法进行坐标旋转  Date黄道坐标中的太阳黄纬不超过1".2,如果对精度要求不是很高,可以置0因此,太阳的地心赤经α及赤纬δ可以用下式(24.6式,24.7式)计算,式中ε是黄赤交角(由21章的21.2式计算)  tanα = cosεsinΘ / cosΘ ……24.6式  sinδ = sinεsinΘ ……24.7式  如果要想得到太阳的视赤经及赤纬,以上二式中的Θ应换为λ,ε应加上修正量:    +0.00256*cos(Ω)[译者注]:实际上就是对Θ补上黄经章动及光行差,ε补上交角章动后再转到赤道坐标中也可在赤道坐标中补章动及光行差,但公式不同。

  公式24.6当然可以转为:tan(α) = cos(ε)*tan(Θ),接下来,我们要注意α与Θ应在同一象限然而,如果你使用计算机语中有ATN2函数(C语言是atan2),那最好保持24.6式不变,这样就可直接利用ATN2函数算出α,即:α = ATN2( cos(ε)*sin(Θ),cos(Θ) )例24.a——计算1992-10-13,0点,即力学时TD=JDE 2448908.5时刻的太阳位置我们算得:T = -0.072183436Lo= -2318°.19281 = 201°.80719M = -2241°.00604 = 278°.99396e = 0.016711651C = -1°.89732Θ= 199°.90987 = 199°54' 36"R = 0.99766Ω= 264°.65λ= 199°.90897 = 199°54' 32"εo= 23°26'24".83 = 23°.44023 (由21章的21.2式算得)ε= 23°.43999α视= -161°.61918 = +198°.38082 = 13h.225388 = 13h 13m 31s.4δ视= -7°.78507 = -7°47' 06"使用VSOP87行星理论计算出的的正确值是:(请与上面的结果做一下比较)Θ= 199°54' 26".18λ= 199°54' 21".56β= +0".72R = 0.99760853α视= 13h 13m 30s.749δ视= -7°47' 01".74基于单片机EM78247的光伏发电系统太阳自动跟踪器  摘要:由于太阳位置随时间而变化,使光伏发电系统的太阳能电池阵列受光照强度不稳定,从而降低了光伏电池的效率,因此,设计太阳自动跟踪器是提高光伏发电系统工作效率的有效措施。

本文采用单片机EM78247为控制核心,设计了一个双轴太阳自动跟踪器,配合两台交流伺服电机实现光伏电池阵列与阳光照射之间的同步跟踪该控制器在硬件和软件各方面采取了多项抗干扰措施,使其具有较好的跟踪效果和较强的抗干扰能力,且运行可靠稳定,具有较高的实际应用价值   关键词:光伏发电系统;EM78247;太阳自动跟踪器  当今社会人们的环保意识越来越强,光伏发电系统的应用普遍受到各国政府重视因为它不仅能为我们提供用之不竭的可持续再生电能,并更好地保护人类赖以生存的环境但其发电效率较低,发电成本相对较高仍然足制约其大规模应用的重要因素在没有出现高效的光伏电池材料之前,研制具有实用价值的阳光随动系统以降低成本,是促进太阳能广泛应用的主要途径之一据研究,双轴系统可提高发电量35%左右,单轴系统也可提高20%左右  国外在20世纪80年代就对太阳跟踪系统进行了研究,如美国、德国在单双轴自动跟踪、西班牙在2倍聚光反射跟踪等方面开发出了相应的商品化自动阳光跟踪器[1]我国于20世纪90年代左右也对其进行了大量的研究,但一直没有稳定可靠的商品化产品出现,主要原因在于:   首先,系统的运行可靠性不高,无法满足使用要求。

由于大部分光伏电站都安装在偏远地区,环境非常恶劣,维护困难,跟踪系统增加了旋转机构与相应的机械机构,可靠性明显下降,如果不能保证整个系统的在各种环境下都能可靠稳定运行,对整个光伏系统反而是灾难性的打击;其次,跟踪器的控制误差偏大尤其对反射聚光的跟踪器,如果跟踪误差偏大,不但不能提高发电效率,反而会使太阳能电池组件的受光面积变小,产生热斑等不利影响,从而降低太阳能电池组件的使用寿命;第三是采用进口技术和器件使成本过高全部购买国外成熟的技术,大大提高系统的硬件成本与维护成本,使推广更加困难  本文以EM78247微处理器为核心,针对光伏发电系统的电池组件,设计开发了一种双轴阳光随动控制器,它具有运行稳定可靠、跟踪误差小、成本低等优点,具有很高的推广应用价值  1  阳光随动控制的基本原理  阳光随动控制器,顾名思义其基本功能就是使光伏阵列随着阳光而转动,基本原理框图如图1所示              图1  光伏阵列阳光随动系统原理框图   该系统时刻检测太阳与光伏阵列的位置并将其输入到控制单元,控制单元对这两个信号进行比较并产生相应的输出信号来驱动旋转机构,使阳光时刻垂直入射到光伏阵列的表面上,使光伏阵列始终处于最佳光照条件下,发挥最大光伏转换效率。

  虽然太阳在天空中的位置时刻都在变化,但其运行却具有严格的规律性,在地平坐标系中,太阳的位置可由高度角α与方位角ψ来确定,公式如下:             (1)  式中: δ为太阳赤纬角;φ为当地的纬度角;α为时角  太阳赤纬角与时角可以由本地时间确定,而对确定的地点,本地的纬度角也是确定,因此只要输入当地相关地理位置与时间信息就可以确定此时此刻的太阳位置  2  系统的整体设计方案   EM78247是一款具有RISC结构的高性能中档单片机,仅有35条单字指令,8 k×14个字节FLASH程序存储器,368×8个字节RAM数据存储器,256×8个字节E2PROM数据存储器,14个中断源,8级深度的硬件堆栈,内部看门狗定时器,低功耗休眠模式,高达25 mA的吸入/拉出电流,外部具有3个定时器模块,2个16位捕捉器/16位比较器/10位PWM模块,10位多通道A/D转换器,通用同步异步接收/发送器等功能模块  自动阳光跟踪器的控制方式主要有微处理器控制、PLC控制、DSP控制与模拟电路控制4种形式,根据以上原理,本文选择性价比较高的EM78247单片机为控制核心,系统实现的具体原理框图如图2所示。

  整个控制器主要由控制单元与驱动执行机构两部分组成控制单元由角度计算及反馈控制、启动信号产生、电机驱动信号产生、保护信号处理与人机通讯5个部分组成系统功能说明如下:单片机循环检测光伏阵列的位置,并将其与计算出的此时本地太阳的高度角与方位角进行比较来确定光伏阵列是否跟踪上太阳的位置,如果没有启动信号满足启动条件,单片机就发出指令驱动电机转动;保护信号是保证系统在外界以及其他非人为因素情况下所执行的一种操作指令,以确保系统不受损坏,从而提高了整个系统的可靠性驱动执行单元主要功能是用来实现电机驱动与旋转,并通过机械传动机构带动光伏电池阵列转动  2.1  控制单元的硬件设计   由于采用了单片机作为主控制单元,大部分工作都由单片机在软件中实现,从而简化了控制电路的硬件设计,简要说明主要控制部分的实现过程  (1)角度计算及反馈控制  单片机通过外扩三态锁存器输入口获取时钟模块产生的时间信号与光电旋转编码器的位置信号后,利用单片机快速运算处理能力用软件加以实现;  (2)电机驱动信号生成  本文采用的是步进电机,其驱动脉冲由单片机内部自带的10位PWM波发生模块产生,只需在软件中设置相应的有关参数就可改变电机的转速;  (3)上位机监控系统是利用单片机内部自带的异步接受/发送器等功能模块,硬件部分只需加MAX 232加以电平转换,便可实现PC机与单片机的数据传输;  (4)考虑到光伏发电只有在太阳光强满足一定强度的时候才能发电,启动信号主要是利用光敏二极管检测光强,保证系统在夜间或阴雨天不满足发电条件的情况下,系统停止跟踪,检测电路如图3所示。

主要由放大、比较与光耦隔离3个部分组成;  (5)系统的保护功能主要包括大风保护、电网掉电保护、振动过大保护、限位开关与接近开关保护组成,单片机检测到保护信号产生时,便发出指令将系统停放在安全的位置上,确保整个系统不受损坏图4是电网掉电检测电路原理图,主要由降压、整流与光耦隔离3个部分组成    图4  电网掉电检测电路原理图  2.。

下载提示
相似文档
正为您匹配相似的精品文档