文档详情

2023年部编版第三章多维随机变量及其分布考研试题及答案.docx

新**
实名认证
店铺
DOCX
16.92KB
约8页
文档ID:528130164
2023年部编版第三章多维随机变量及其分布考研试题及答案.docx_第1页
1/8

第三章多维随机变量及其散布一、填空题011.(1994年纪学一)设互相独破的两个随机变量存在统一散布律,且的散布律为那么随机变量的散布律为.【解题剖析】起首要依照的界说断定的取值范畴,而后求取值的概率即可.解: 因为仅取0、1两个数值,故也仅取0跟1两个数值,因互相独破,故 的散布律为012.(2003年纪学一)设二维随机变量的概率密度为那么=.【解题剖析】应用求解.解:如图10-5所示图10-5.二、选择题1.(1990年纪学三)设随机变量跟互相独破,其概率散布律为-11-11那么以下式子准确的选项是(  ).. .. .【解题剖析】乍看大概谜底是,来由是跟同散布,但这是过错的,因为,假定,说明取什么值时,也必定取一样的值,而这是不能够的,因而只能从剩下的三个谜底中选一个,这时只要直截了当盘算即可.解:由跟互相独破知因而,准确谜底是.2.(1999年纪学三)设随机变量,且满意那么即是(  )..0;.;.;.1.【解题剖析】此题应从所给前提动身,寻出随机变量的联合散布.-101-101解: 设随机变量的联合散布为  由知 从而有 ,相似地 进一步可知 即 因而有准确谜底是.3.(1999年纪学四)假定随机变量听从指数散布,那么随机变量的散布函数(  )..是延续函数;.至多有两个延续点;.是门路函数;.恰恰有一个延续点.【解题剖析】从公式动身求解即可.解: 由题设令那么因而的散布函数为可见其仅有一个延续点准确谜底是.4.(2002年纪学四)设跟是恣意两个互相独破的延续型随机变量,它们的概率密度分不为跟,散布函数分不为跟,那么.必为某一随机变量的散布密度;.必为某一随机变量的散布函数;.必为某一随机变量的散布函数;.必为某一随机变量的散布密度.解: 因为假定随机变量与互相独破,它们的散布函数分不为与,那么的散布函数为,可知必为某一随机变量的散布函数.应选择.注:此题与2002年高数一中的选择题类同.此题也能够用赋值法求解.三、盘算与证实题1.(1994年纪学三)假定随机变量互相独破,且同散布,求行列式的概率散布.【解题剖析】由阶行列式表现,还是一随机变量,且,因为独破同散布,故与也是独破同散布的,因而可先求出跟的散布律,再求的散布律.解: 记,,那么.随机变量跟独破同散布:..随机变量有三个能够值-1,0,1.易见因而.2.(2003年纪学三)设随机变量与独破,此中的概率散布律为,而的散布密度为,求随机变量的散布密度.【解题剖析】此题是求随机变量函数的散布,这里的两随机变量一个是团圆型,一个是延续型,咱们依然从求散布函数动身,依照的差异取值,应用全概率公式来求解.解: 设为散布函数,那么由全概率公式及与的独破性可知,的散布函数为,由此得3.(2006年纪学四)设二维随机变量的概率散布律为xY-101-1a00.200.1b0.2100.1c此中为常数,且的数学希冀,,记.求(1)的值;(2)的概率散布;(3)【解题剖析】请求的值,只要求寻到三个含有的等式即可,这能够由散布函数的性子及题设中所给的两个前提失掉;求的概率散布,起首要弄清晰的能够取值,由的取值可知,的能够取值为-2,-1,0,1,2,而后再求取值的概率;请求,只要求转化为求对于的概率,由,既可得出论断.解: (1)由概率散布的性子知,,即.由,可得.再由,得.解以上对于的三个方程得.(2)的能够取值为-2,-1,0,1,2,,,,.即的概率散布律为-2-10120.20.10.30.30.1(3)=.4.(1987年纪学一)设随机变量互相独破,其概率密度函数分不为求的概率密度函数.【解题剖析】此类咨询题,普通有两种解法:一种是先写出二维随机变量()的联合概率散布密度函数,再盘算的概率散布密度函数,另一种是直截了当应用两独破随机变量跟的散布密度盘算公式(即卷积公式)求解.解: 方法1因为随机变量互相独破,因而二维随机变量()的概率散布密度函数为因而,随机变量的散布函数为因而,随机变量的散布密度函数为方法2因为随机变量互相独破,因而,由卷积公式知,随机变量的密度函数为==5.(1999年纪学四)设二维随机变量()在矩形上听从平均散布,试求边长为跟的矩形面积的概率散布密度函数.【解题剖析】由题设轻易得出随机变量()的散布密度,此题相称于求随机变量的函数的散布密度.可先求出其散布函数,再求导得散布密度.在求散布函数时,必定要留意对的取值范畴进展探讨.解: 因为二维随机变量()听从平均散布,因而,它的概率散布密度函数为设为的散布函数,那么事先,事先,如今,设如图10-6所示,曲线与矩形的上边交于点;图10-6位于曲线上方的点满意,位于下方的点满意,因而因而,6.(2001年纪学一)设某班车终点站上车人数听从参数为的泊松散布,每位搭客半途下车的概率为,且半途下车与否互相独破.以表现在半途下车的人数,求:(1)在发车时有个搭客的前提下,半途有人下车的概率;(2)二维随机变量的概率散布.【解题剖析】显然,第一咨询求的是前提概率,发车时有个搭客,半途有人下车的概率,为重伯努利概型,能够依此求解.其次,请求二维随机变量的概率散布,起首断定的取值,而后按乘法公式求解.解: (1)设事情{发车时有个搭客},{半途有团体下车},那么在发车时有个搭客的前提下,半途有团体下车的概率是一个前提概率,即依照重伯努利概型,有,此中.(2)因为而上车人数听从,因而因而的概率散布律为此中.7.(2001年纪学三)设随机变量跟的联合散布在正方形(如图10-7)上听从平均散布,试求随机变量的概率散布密度函数图10-7【解题剖析】此题要紧考察随机变量函数的散布,可从散布函数动身求解.然而,这里要留意的是随机变量函数带有相对值.解: 由前提知跟联合密度为以表现随机变量的散布函数,显然,事先,;事先,.设那么,因而,随机变量的散布密度为8.(2002年纪学三、四)假定一装备开机后无毛病任务的时刻听从指数散布,平均无毛病任务的时刻()为5小时,装备准时开机,呈现毛病时主动关机,而在无毛病的状况下任务2小时便关机.试求该装备每次开机无毛病任务的时刻的散布函数【解题剖析】此题要紧考察随机变量函数的散布.起首要寻到与的关联,而后分状况进展探讨.解: 设的散布参数为,因为可见.显然,.对于对于设有=因而,的散布函数为求随机变量函数的散布,是概率论中测验的重点,对于求延续型随机变量函数的散布密度,普通从求散布函数动身,联合图形对自变量的取值范畴进展探讨,求出散布函数,而后求导即得散布密度.。

下载提示
相似文档
正为您匹配相似的精品文档