(2)脱酸性气体工段 天然气中的酸性气体主要是指C02和H2S,根据东海平湖天然气的气质情况(C02含量较高几乎不含H2S),LNG站采用以MEA(单乙醇胺,R—NH2)为溶剂的化学吸收法脱除酸性气体(以脱CO2为主)MEA的水溶液称作胺液,胺液与酸性气体反应生成化合物,从而吸收酸性气体反应后的胺液可再生,即当温度升高、压力降低时,化合物将分解出酸性气体,使胺液可重复使用 由过滤计量和压缩工段送来的天然气经过分离器,除去因第二级压缩而析出的液滴,然后进入吸收塔下部吸收塔中,贫胺液(未吸收酸性气体的胺液)从吸收塔上部喷淋而下,天然气中的酸性气体被贫胺液吸收脱除酸性气体后的天然气从吸收塔顶部出来,在出口冷凝器中冷却,然后由出口气液分离器分离出从吸收塔带来的胺液,含有饱和水蒸气的天然气进至脱水工段 (3)脱水工段 选用分子筛为脱水剂两个分子筛气体干燥器循环工作,一个脱水,另一个再生 脱酸性气体后含有饱和水蒸气的天然气,被送至分子筛气体干燥器,经脱水后成为干气(含水量≤1×10-6),再经过过滤后进入液化工段1.1.3.2 液化工艺 LNG站采用的液化工艺一般有以下3种:单一流体膨胀制冷液化工艺、多种制冷剂级联制冷液化工艺和混合制冷剂制冷液化工艺。
其中单一流体膨胀制冷液化工艺有利用原料气较高压力的膨胀工艺和用N2高压膨胀制冷循环工艺;多种制冷剂级联制冷液化工艺以多种(通常为三种)制冷剂各为独立制冷循环闭路,对原料天然气依次进行不同程度的递次制冷而达到全部液化;混合制冷剂(MCR)制冷液化工艺则是利用多种成分(N2、C1、C2、C3、C4、C5等)混合物形成的闭路循环,通过单级或多级压缩膨胀达到制冷目的 根据LNG站的各种工艺条件,在比较各方案的技术和投资情况,考虑本LNG站的运行负荷特点,液化工段采用了法国燃气公司的一种混合制冷剂(MCR)循环阶式制冷工艺(C.I.I)本站使用的MCR的组分有氮气、甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷,通过三级压缩膨胀的闭路循环达到致冷目的,使原料天然气液化 从脱水工段来的天然气在冷箱上部进入,在冷箱中被预冷后流入重烃分离器,天然气中的重烃被凝析并分离,天然气返入冷箱在冷箱中天然气被深冷直至液化,然后经节流阀达到-161℃、0.1MPa后,送至LNG储罐1.1.3.3 储存工艺 经液化工段的-162℃LNG进入储罐储存LNG储罐一般常见有3种类型,即双金属地面储罐、预应力钢筋混凝土外壳地面储罐及地下储罐。
从安全性、经济性、先进性和成熟性等方面考虑,本站采用预应力钢筋混凝土外壳、自承式9%镍钢内胆的全容式LNG低温储槽,公称容积为20000m3,最大自然蒸发率0.08%,内胆直径为33.5m,高26m所有进入内胆的管道均通过罐顶穿越在底部和罐壁设有碳钢板焊成的隔气层在外壳、内胆之间的环型空间内及储罐顶部充满弹性体垫衬和珍珠岩,底部采用泡沫玻璃,用以绝热1.1.3.4 气化及加臭计量工艺 需要时,储罐内的LNG由罐内的LNG泵送至气化器,根据上海LNG站用于应急气源或调峰的功能特点和要求,选用启动灵活迅速的浸没燃烧式气化器从燃料气系统来的天然气在喷嘴内燃烧,燃烧产物直接进入水浴使水浴产生搅动并被加热从LNG泵来的LNG进至浸没在水浴中的不锈钢盘管,在盘管内的LNG被水浴和烟气加热而升温并气化气化后的天然气经过加臭、计量后输送至天然气高压管网1.1.3.5 B0G处理工艺 BOG是指LNG系统中由于LNG受热而自然蒸发的低温气态天然气(Boil 0ff Gas),主要由LNG储槽和管道等受热产生的BOG及由LNG储罐内的LNG液下泵运行时产生的热量而生成的BOG组成本站选用的BOG处理方法为:由BOG压缩机压送至燃料气系统或天然气高压管网。
各路BOG送至BOG压缩机吸入筒,经BOG压缩机增压后,由空气冷却器冷却然后,在液化或气化期间送至燃料气系统,在备用期间通过计量加臭送至天然气高压管网当BOG流量大于压缩机工作能力时,多余气体通过集气管送至火炬燃烧1.2 LNG站使用情况 2000年8月9日至8月16日、9月14日至9月19日、10月15日至10月26日期间,东气上游由于设备检修、海底管道损坏以及受台风影响等因素而引起的停供期共达26天,LNG站及时启动,气化量共达750万m3左右,保证了直供用户的正常用气 2001年4月4日至4月9日,东气上游由于设备检修停供,LNG站及时启动气化装置保证正常供气 2002年12月,根据调度命令,LNG站及时启动并根据需要调节气化量,保证了高峰用气需求 自投运以来,LNG站已先后14次启用气化装置,总气化量超过2 300万m3,在上游设备故障和检修、海上平台因台风影响而停供、输气管线发生故障以及用气高峰时,都能及时向管网供气,充分发挥了备用气源的作用,体现了启动迅速、调节灵活的特性,在保证向用户不间断供气中起到了至关重要的作用 2 上海天然气快速发展对供应应急保障提出更高要求 随着2003年东海平湖天然气一期工程的扩产,日供气量达到1 80万m3/d,则现有5号沟LNG事故气源备用站的容量明显不足,应急保障天数仅为6天左右。
因此东海平湖天然气的供气安全性和抗险能力较差,急需提高 2004年1月“两气东输”工程东线的建成投产,“西气东输”天然气开始供应上海2005年供量达12.7亿m3,2006年预计年供气量有望达到亿m3,至2006年6 月高峰日供气量达到674万m3今后几年,“西气东输”天然气供应量还将逐年增加对于“西气东输”天然气,其管道全长约4 000km,根据“西气东输工程可行性研究报告”,长输管线中断输气的事故频率为1.68次/a,每年持续68h,如果考虑洪水、山体山坡、地震等无法抗拒地重大灾难,其持续时间远不止68小时即使江苏金坛地下储气库建成,也很难在事故工况下完全满足下游用户安全用气的要求上海作为“西气东输”工程的末端用户,其在供气安全方面所承受的风险更大根据规划,上海LNG接收站规划站址在洋山深水港西门堂,该项目包括LNG船码头、LNG接收站及海底输气管道,一期设计规模300万t/a,计划将于2009年建成投产,二期设计规模600万t/a,计划将于于2012年建成远期天然气供应量将达到上海总用气量的60%以上,天然气用户对进口LNG的依赖性将大大提高一旦LNG海底输气管道、LNG接收站及其供气上游或LNG船运输等环节出现故障引起停供,将会使得上海天然气供应处于瘫痪状态。
上海作为国际性大都市,保证城市天然气供应的安全可靠性尤为重要,必须考虑一定的天然气应急保障措施 一般,天然气供应应急保障可考虑多气源供应互补、地下储气库、LNG储存等措施据有关方面调查,上海不具备建造地下储气库的地质构造条件而在上海LNG接收站建成前,由于“西气东输”供应上海的天然气量将远远超过东海平湖天然气的供应量,西气事故时,东气将难以补充因此,采用LNG储存方式即建设LNG事故气源备用站,对于上海来说是较为有效可行的应急保障措施之一3 五号沟LNG事故气源备用站扩建(二期)工程 五号沟LNG站位于浦东新区东面的长江岸边,具有上海不可多得的岸线资源条件,早在百号沟LNG事故气源备用站建设的同时,在规划选址工作的进行中已经研究考虑在九二垦区东侧至规划驳岸线预留小型LNG接收站的发展用地和岸线、码头而随着长江口疏浚工程的完成,长江口水深条件也可基本满足建设小型码头,利用小型LNG船运输LNG而且,扩建现有的五号沟LNG站并建小型码头,可充分利用现有的储存设施、气化设施、BOG处理设施以及相应的公用配套设施,可减少工程量、减少投资、缩短建设周期 经过反复论证和研究,五号沟LNG事故气源备用站扩建项目已正式启动。
3.1 扩建规模 扩建后储存能力:12万m3(LNG),其中新增10万m3(LNG) 扩建后气化能力:31万m3/h,其中新增24万m3/h LNG船专用码头:设计船型4万m3小型LNG船,最大卸载能力5 000m3/h(LNG)3.2 基本功能 扩建项目的基本功能包括:(1)接收、操作和靠泊LNG船2)从LNG船卸液至LNG储罐,将LNG存储在LNG储罐中3)在天然气管网有需求时,将LNG从储罐用泵送到气化器中以合适的压力将天然气输送到天然气外输管线,并对送入外输管线的天然气进行计量和加臭4)处理卸载过程中产生和操作过程中吸热产生的B。