大学物理习题解答和分析.doc

上传人:工**** 文档编号:522419955 上传时间:2022-11-24 格式:DOC 页数:12 大小:640.50KB
返回 下载 相关 举报
大学物理习题解答和分析.doc_第1页
第1页 / 共12页
大学物理习题解答和分析.doc_第2页
第2页 / 共12页
大学物理习题解答和分析.doc_第3页
第3页 / 共12页
大学物理习题解答和分析.doc_第4页
第4页 / 共12页
大学物理习题解答和分析.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《大学物理习题解答和分析.doc》由会员分享,可在线阅读,更多相关《大学物理习题解答和分析.doc(12页珍藏版)》请在金锄头文库上搜索。

1、6-1频率为的平面简谐纵波沿细长的金属棒传播,棒的弹性模量,棒的密度.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。解:波速,波长 6-2一横波在沿绳子传播时的波方程为:(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s和t=2s的波形,并指出波峰和波谷.画出x=1.0m处的质点的振动曲线并讨论其与波形图的不同.分析 与标准方程比较即可确定其特征参量。解:(1)用比较法,由得 (2)题图6-2(3)t=1(s)时波形方程为:t=2(s)时波形方程为:x=1(m)处的振动方程为:6-3 一简谐波沿x轴正方向传播,t=T/4时的波形图

2、如题图63所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-,.求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。依旋转矢量法可求t=0时的各点的相位。解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知题图6-3t=T/4质点1的初相为; 质点2的初相为/2;质点3的初相为0;质点4的初相为-/2.6-4 有一平面谐波在空间传播,如题图64所示.已知A点的振动规律为,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A点为b处的质点的振动规律是否一样?分析

3、无论何种情况,只需求出任意点x与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。只要把各种情况中b的坐标值分别代入相应的波动方程就可求得b点的振动规律。解: 设其波长为,选o点处为坐标原点,由方程可得取图中 所示的坐标,则x处质点的振动比A点滞后,故题图6-4同理可得要求距A为b的点的振动规律,只要把各种情况中b的坐标值分别代入相应的波动方程就可求得.从结果可知,取不同的坐标只是改变了坐标的原点,波的表达式在形式上有所不同,但b点的振动方程却不变.即6-5一平面简谐波沿x轴正向传播,其振幅为A,频率为,波速为u.设时刻的波形曲线如题图65所示.求(

4、1)x=0处质点振动方程;(2)该波的波方程.分析 由于图中是时刻波形图,因此,对x=0处质点,由图得出的相位也为时刻的相位。再由旋转矢量推算出t=0时刻的初相位。进而写出波动方程。解:(1)设处质点的振动方程为 由图可知,时 ,题图6-5所以处的振动方程为:(2)该波的表达式为:6-6一平面简谐波沿x轴正向传播,波的振幅,波的角频率,当时,处的质点正通过其平衡位置向y轴负方向运动,而处的质点正通过点向y轴正方向运动.设该波波长,求该平面波的波方程.分析 通过旋转矢量图法,结合点和点,在的运动状态,可得到波长和初相。解:设平面简谐波的波长为,坐标原点处质点振动初相为,则该列平面简谐波的表达式可

5、写成 时 处 因此时质点向y轴负方向运动,故 而此时, 质点正通过处,有,且质点向y轴正方向运动,故 由(1)、(2)两式联立得 , 所以,该平面简谐波的表达式为:6-7 已知一平面简谐波的波方程为(1)分别求两点处质点的振动方程;(2)求、两点间的振动相位差;(3)求点在t=4s时的振动位移.分析 波方程中如果已知某点的位置即转化为某点的振动方程。直接求解两点的振动相位差和某时刻的振动位移。解:(1)、的振动方程分别为:(2) 与两点间相位差 (3) 点在t=4s时的振动位移 6-8如题图6-8所示,一平面波在介质中以波速沿x轴负方向传播,已知A点的振动方程为.BA题图6-8(1)以A点为坐

6、标原点写出波方程;(2)以距A点5m处的B点为坐标原点,写出波方程.分析 由波相对坐标轴的传播方向和已知点的振动方程直接写出波方程。解:(1)坐标为x处质点的振动相位为 波的表达式为 (2)以B点为坐标原点,则坐标为x点的振动相位为波的表达式为 6-9 有一平面简谐波在介质中传播,波速,波线上右侧距波源O(坐标原点)为75m处的一点P的运动方程为,求:(1)波向x轴正向传播的波方程;(2)波向x轴负向传播的波方程.分析 先根据假设的标准波方程表示已知点P的振动方程,并与实际给出的P点方程比较求出特征量,进而求解波方程。解:(1)设以处为波源,沿轴正向传播的波方程为:在上式中,代入,并与该处实际

7、的振动方程比较可得:, 可得:为所求(2)设沿轴负向传播的波方程为:在上式中,代入,并与该处实际的振动方程比较可得:,可得:为所求6-10 一平面谐波沿ox轴的负方向传播,波长为,P点处质点的振动规律如题图610所示.求:(1)P点处质点的振动方程;(2)此波的波动方程;(3)若图中,求O点处质点的振动方程.分析 首先由已知振动规律结合旋转矢量图可得P点振动的初相与周期,从而得到其振动方程。波动方程则由P与原点的距离直接得到。波动方程中直接代入某点的坐标就可求出该点的振动方程。解:(1)从图中可见,且,则P点处质点的振动方程为题图6-10(2)向负方向传播的波动方程为(3)把代入波动方程即得6

8、-11一平面简谐波的频率为500Hz,在空气()中以的速度传播,达到人耳时的振幅为.试求波在人耳中的平均能量密度和声强.分析 平均能量密度公式直接求解。声强即是声波的能流密度。解:波在耳中的平均能量密度:声强就是声波的能流密度,即:6-12 一正弦空气波,沿直径为的圆柱形管传播,波的平均强度为,频率为300Hz,波速为.求:(1) 波中的平均能量密度和最大的能量密度各是多少?(2) 每两个相邻同相面间的波段中含有多少能量?分析 平均能量密度为其在一个周期内的平均值,为最大值的一半。两个相邻同相面既是相距一个波长的距离的波段。解: (1)(2) 两个相邻同相面间的波段所对应的体积为613 在均匀

9、介质中,有两列余弦波沿Ox轴传播,波动表达式分别为与,试求Ox轴上合振幅最大与合振幅最小的那些点的位置。分析 合振幅大小由相位差确定。解:(1)设合振幅最大处的合振幅为,有式中 因为当时,合振幅最大,即有所以,合振幅最大的点 (k=0,1,2,)(2)设合振幅最小处的合振幅为,有式中 因为当时,合振幅最小,即有所以,合振幅最小的点 (k=0,1,2,)6-14 相干波源,相距11m,的相位比超前.这两个相干波在、连线和延长线上传播时可看成两等幅的平面余弦波,它们的频率都等于100Hz,波速都等于400m/s.试求在、的连线之间,因干涉而静止不动的各点位置. 分析 首先确定两相干波连线上任意点两

10、波的相位差,再根据干涉静止条件确定位置。解:取、连线为x轴,向右为正,以为坐标原点.令.取P点如图.由于,从、分别传播来的两波在P点的相位差 由干涉静止的条件可得: 得: () 即x=1,3,5,7,9,11m为干涉静止点.题图6-14615 一微波探测器位于湖岸水面以上0.5m处,一发射波长21cm的单色微波的射电星从地平线上缓缓升起,探测器将继续指出信号强度的极大值和极小值.当接受到第一个极大值时,射电星位于湖面以上什么角度?分析 探测器信号出现极值是由于两列波干涉叠加造成,一列为直接接收的微波,另一列为经过水面反射后得到的。计算两列波在相遇点(即探测器处)的波程差并根据相干加强求解。解:

11、如图,P为探测器,射电星直接发射到P点波(1)与经过湖面反射有相位突变的波(2)在P点相干叠加,波程差为 (取k=1)整理得: 解得: (1)(2)DPOh题图615616如题图6-16所示,,为两平面简谐波相干波源. 的相位比的相位超前,波长,在P点引起的振动振幅为0.30m,在P点引起的振动振幅为0.20m,求P点的合振幅.分析 合振幅由分振动的振幅和分振动在该点的相位差共同确定。解:617如题图617中A、B是两个相干的点波源,它们的振动相位差为(反相)。A、B相距30cm,观察点P和B点相距40cm,且.若发自A、B的两波在P点处最大限度地互相削弱,求波长最长能是多少?题图616题图6

12、17分析 最大限度地削弱,即要求两振动在P点反相。故求两波在P点相位差即可求解。解:在P最大限度地削弱,即两振动反相.现两波源是反相的相干波源,故要求因传播路径不同而引起的相位差等于 。由图 . 所以 ,6-18 如题图618所示,两列相干波在P点相遇.图中,若一列波在B点引起的振动是;另一列波在C点引起的振动是;两波的传播速度,不考虑传播途中振幅的减小,求P点的合振动的振动方程.题图618分析 重点在于求出两列波在P点的相位差。根据相位差确定合振动的振动方程。解:第一列波在P点引起的振动的振动方程是: 第二列波在P点引起的振动的振动方程是:P点的合振动的振动方程是:6-19一驻波中相邻两波节

13、的距离为d=5.00cm,质元的振动频率为,求形成该驻波的两个相干行波的传播速度u和波长.分析 驻波的相邻波节或波腹间的距离为波长的一半。解:波长 , 波速 6-20两波在一很长的弦线上传播,其波方程分别为: 求:(1)两波的频率、波长、波速;(2)两波叠加后的节点位置;(3)叠加后振幅最大的那些点的位置.分析 首先得到驻波方程,然后根据节点和波腹相位特点求得节点和波腹位置。解:(1)与波动的标准表达式对比可得: , , 波速(2)节点位置 (3)波腹位置6-21在弹性媒质中有一沿x轴正向传播的平面波,其表达式为 (SI)若在处有一媒质分界面,且在分界面处反射波相位突变,设反射波的强度不变,试写出反射波的表达式分析 反射点固定,且反射波在反射点有相位突变。两波的相位差为波从x点开始,反射后回到x点所形成的相位延迟。解:反射波在x点引起的振动相位为 反射波表达式为 或 6-22 两平面谐波分别沿ox轴正、 负向传播,其波动方程分别是和.求:(1)处质点的合振动方程;(2)处质点的振动速度.分析 在处两波正好反相,因此振幅为两波振幅之差,而相位由振幅大者决定。解: 6-23若在同一介质中传播的频率为1200Hz和400Hz的两声波有相同的振幅,求(1)它们的强度之比;(2)两声波的声强级差.分析 由强度公式求解。解:(1)由可得:(2)由声强级公式,则两声波声强级差为

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 研究报告 > 安防行业

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号