《(最新整理)中考数学压轴题解题技巧超详细》由会员分享,可在线阅读,更多相关《(最新整理)中考数学压轴题解题技巧超详细(26页珍藏版)》请在金锄头文库上搜索。
1、(完整)中考数学压轴题解题技巧超详细(完整)中考数学压轴题解题技巧超详细 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)中考数学压轴题解题技巧超详细)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整)中考数学压轴题解题技巧超详细的全部内容。32012年中考数学压轴题解题技巧解说数学压轴题是初中数学中覆盖知识面
2、最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧。如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点。 (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1
3、个单位长度,运动时间为t秒.过点P作PEAB交AC于点E.过点E作EFAD于点F,交抛物线于点G。当t为何值时,线段EG最长?连接EQ在点P、Q运动的过程中,判断有几个时刻使得CEQ是等腰三角形?请直接写出相应的t值。解:(1)点A的坐标为(4,8) 1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解 得a=-,b=4抛物线的解析式为:y=-x2+4x 3分(2)在RtAPE和RtABC中,tanPAE=,即=PE=AP=tPB=8t点的坐标为(4+t,8-t)。点G的纵坐标为:(4+t)2+4(4+t)=t2+8. 5分EG=-t2
4、+8-(8t) =-t2+t。-0,当t=4时,线段EG最长为2。 7分共有三个时刻. 8分t1=, t2=,t3= 11分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍.2、解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必
5、须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等.认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法当思维受阻时,要及时调整
6、思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。注意1、动点题肯定是图形题,图形题是中考试重点,分值在100分以上(满分150.包括统计和概率)2、大部分压轴题都是几何图形和代数函数图形相结合,在动点的运动中存在一些特殊情况下的边长、面积、边边关系、面积和边的关系等。特殊情况是指动点在变化过程中引起图形变化发生质的变化,如由三角形变成四边形,由四边形变成五边形,这时一定要注意分类讨论3、知识的储备:熟练掌握所有相关图形的性质。a、三角形(等腰、直角三角形)b、平行四边形(矩形、菱形、正方形)c、圆 d、函数(一次函数,正比例函数,反比例函数,二次函
7、数)4、坐标系中的四大金刚: 两个一次函数平行,K值相等; 两个一次函数互相垂直,K值互为负倒数。 任意两点的中点坐标公式; 任意两点间距离公式。函数图形与x,y坐标轴的交点连线的夹角也常常用到,所以要小心;有些特殊点会形成特殊角,这一点也要特别注意。5、做题思路,有三种。1、把几何图形放到坐标系中看看数据的变化。2、把坐标系中的图形提出坐标系看看图形的变化.3、把图形最难理解的部分提炼出来重点分析(即去掉无用的图形线段).压轴题解题技巧题型分类解说一、 对称翻折平移旋转1(南宁)如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称。
8、点、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点.(1)分别写出抛物线与的解析式;(2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由。12题题图12yxAOBPN图2C1C4QEF2(2)yxAOBPM图1C1C2C32(1)2(福建宁德)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物
9、线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标(5分)二、 动态:动点、动线APOBECxy3(辽宁锦州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1、x2是方程x22x80的两个根(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PEAC,交BC
10、于点E,连接CP,当CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由 4(山东青岛)已知:如图,在RtACB中,C90,AC4cm,BC3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ若设运动的时间为t(s)(0t2),解答下列问题:(1)当t为何值时,PQBC?(2)设AQP的面积为y(),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把RtACB的周长和面积同
11、时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图,连接PC,并把PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由DBAQCP图AQCPB图AQCPB5(吉林省)如图所示,菱形ABCD的边长为6厘米,B60从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿ACB的方向运动,点Q以2厘米/秒的速度沿ABCD的方向运动,当点Q运动到D点时,P、Q两点同时停止运动设P、Q运动的时间为x秒时,APQ与ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:(1)
12、点P、Q从出发到相遇所用时间是_秒;(2)点P、Q从开始运动到停止的过程中,当APQ是等边三角形时x的值是_秒;(3)求y与x之间的函数关系式6(浙江嘉兴)CABNM(第24题)如图,已知A、B是线段MN上的两点,,,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?三、 圆7(青海) 如图10,已知点A(3,0),以A为圆心作A与Y轴切于原点,与x轴的另一个交点为B,过B作A的切线l。(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当BFD与EAD相似时,求出BF的长 CxxyyAOBEDACBCDG图1图28(天水)如图1,在平面直角坐标系xOy,二次函数yax2bxc(a0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OBOC,tanACO(1)求这个二次