《阻抗变换器的设计与仿真》由会员分享,可在线阅读,更多相关《阻抗变换器的设计与仿真(14页珍藏版)》请在金锄头文库上搜索。
1、毕业设计(论文)摘 要射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。本文介绍了一种中心频率为400MHz、频宽为40MHz的5075欧姆T型阻抗变换器的设计与仿真过程。文中概述了射频阻抗变换器的种类、用途及发展。在分析了阻抗匹配理论基本知识的基础上,论述了射频阻抗变换器的设计过程,然后通过ADS软件进行设计和仿真,并对仿真结果进行了分析总结。关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS目 录摘 要IABSTRACTII第一章 引 言21.1 概述21.2 射频阻抗变换电
2、路的类型21.3 射频阻抗变换器的用途21.4射频阻抗变换器设计的发展3第二章 基本原理42.1 阻抗匹配42.2 史密斯圆图52.2.1 等反射圆52.2.2 等电阻圆图和等电抗圆图62.2.3 Smith圆图(阻抗圆图)82.3 电压驻波比9第三章 T型阻抗变换器的设计103.1 T型阻抗变换器(RSRL)的设计步骤103.2 T型阻抗变换器的设计过程12第四章 阻抗变换器电路仿真134.1 ADS 软件简介134.2 T型阻抗变换器的仿真结果及分析14第五章 总结16参考文献17致 谢18表目录图1. 1 T型变换电路1图1. 2 Rs + jXs = RL - jXL时的共轭匹配2图1
3、. 3 天线与接收端的阻抗匹配2图2. 1 传输线终端连接不同的ZL在等反射圆图的表示5图2. 2 等电阻圆 图2. 3 等电抗圆7图2. 4 smith圆图8图3. 1 T型匹配电路10图3. 2 T型匹配电路实际电路类型11图3. 3 T型阻抗变换器电路12图4. 1 T型阻抗变换器仿真电路13图4. 2 T型阻抗变换器电路仿真结果14第 1 页 共 15 页毕业设计(论文)第一章 引 言1.1 概述 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大
4、器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值. 1.2 射频阻抗变换电路的类型L型电路阻抗匹配:此型电路结构仅用两个电抗性元件提供了阻抗匹配,匹配电路的设计都基于Q因数。型变换电路:在L型匹配电路中引入第三个电路
5、元件,即在串联元件的另一个并联电纳,就可以把电路的Q作为一个设计参数,从而为电路设计提供了必要的灵活性。T型变换电路:T型变换电路如图1.1所示,它是一个双重型变换电路。然而在这个电路中,串联电抗X1首先把电抗提高到,而余下的并联电纳降低电阻。图1. 1 T型变换电路 其余还有分支电容变换器、并行双调谐变换器(需精确控制宽带时使用)。1.3 射频阻抗变换器的用途阻抗变换器是使传输线阻抗和负载阻抗达到匹配,简单说就是使Z0=ZL。可确保传输到最终负载的电磁能量值或功率能达到最大量。要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即Rs + jXs = RL - jXL图1. 2
6、 Rs+jXs=RL-jXL时的共轭匹配在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。阻抗变换器经常应用在天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间。例如:天线的阻抗匹配就需要在天线与接收端之间加入射频阻抗变换器,电路图如图1.3所示。图1. 3 天线与接收端的阻抗匹配阻抗变换器还可应用于内阻抗匹配技术中,例如:管内阻抗匹配问题就需要内阻抗匹配技术,其中就用到了阻抗变换器。1.4射频阻抗变换器设
7、计的发展射频阻抗变换器的设计方法由原先的手工计算、史密斯圆图法,发展到了现今使用的计算机软件仿真。原先的手工计算是一种极其繁琐的方法,因为需要用到较长计算公式、并且被处理的数据多为复数。现今的计算机软件仿真使设计更为方便,而且通过其仿真结果可以得到电路的噪声系数、输入输出驻波比、增益及电路的稳定性等指标。射频电路设计的仿真软件也在不断的发展,之前射频电路仿真主要用ANSOFT、Microwave office软件进行仿真,现在的主流仿真软件为ADS仿真软件,此软件在射频电路的仿真分析与设计方面的应用更为方便。第二章 基本原理2.1 阻抗匹配阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。
8、传输线的阻抗匹配通常有以下两种类型:(1)信号源与传输线之间的阻抗匹配。由于信号源的内阻抗不等于传输线的特性阻抗。因而需要在信号源与传输线之间加入匹配装置。信号源与传输线的阻抗匹配又有两种情况: 信号源的共轭匹配。信号源的共轭匹配是指负载得到最大功率的一种措施,实现方法是使负载阻抗(即传输线入端的输入阻抗)等于信号源内阻抗的共轭值,此时负载吸收的功率为最大(可以证明)。 信号源的阻抗匹配。信号源的阻抗匹配是指选择信号源内阻使或,满足的电源称为匹配源,实用中的条件难以完全满足,为此通常在信号源后接一隔离器,吸收反射波。(2)传输线与负载之间的阻抗匹配。由于负载阻抗不等于传输线的特性阻抗,当传输波
9、到达负载时将产生反射,因而需要在传输线与负载之间加入匹配装置,消除负载的反射,从而使传输线工作在行波状态。负载与传输线之间的阻抗匹配方法很多。对这类匹配装置的基本要求是引入的附加损耗应可能小、频带宽、能适应各种负载。常见的基本匹配装置有三类:阶梯阻抗变换器、支节匹配器和指数线匹配器。一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路。传输线阻抗和负载阻抗达到匹配的定义,简单说就是使Z0=ZL。在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将
10、可确保传输到最终负载的电磁能量值能达到最大量。最简单的阻抗匹配方法是设计负载电路使其满足ZL= Z0的条件。可惜这是理想的情况,在设计实务上,因为负载电路必须先满足其它必需的条件,否则负载电路就无法提供应用所需的性能,这通常都会影响它和传输线的阻抗匹配。解决方案是在传输线与最终负载之间加入阻抗匹配网络,加入此网络的目的就是为了减少传输线和此网络之间的电波反射作用。如果阻抗匹配网络是无耗损的,而且其输入阻抗ZL等于传输线的特性阻抗Z0,则能量将可以透过它全部到达负载端。2.2 史密斯圆图Smith圆图是解决传输线、阻抗匹配等问题的有效图形工具。2.2.1 等反射圆等反射圆是一组同心圆,半径为01
11、。等反射圆可以用来表示向量形式的反射系数。传输线的反射系数0的表达式为 (2-1)其中 L=arctan(0i/0r) 。图2. 1 传输线终端连接不同的ZL在等反射圆图的表示 2.2.2 等电阻圆图和等电抗圆图1.归一化阻抗公式 一端连接负载无耗传输线的输入阻抗可表示为 (2-2) 式中,Z0为特性阻抗。对传输线的特性阻抗进行归一化处理可得 (2-3)式中,Zin为归一化阻抗。用分母的复共轭乘以上式的分子和分母,得到 (2-4)可分别求得归一化电阻r和电抗x的表达式为 (2-5) (2-6) 重新排列后得 (2-7) (2-8)2.等电阻圆和等电抗圆公式(2-7)和公式(2-8)分别表示直角
12、平面和上的两组圆,等电阻圆如图2.2所示,等电抗圆如图2.3所示。图2. 2 等电阻圆 图2. 3 等电抗圆(1) 等电阻圆对于等电阻圆有 半径: 圆心: r的范围是0r。当r=0时,圆的中心在原点,半径为1。当r=1时,圆的中心向正方向位移1/2单位,半径为1/2。当r时,圆的中心位移收敛到+1点,圆的半径0。(2) 等电抗圆对于等电抗圆 半径: 圆心:x的范围为x,x可为负(即电容性),也可为正(即电感性)。所有的圆的中心都在过点并垂直于实数轴()的线(虚线)上。对于x=,可以得到一个半径为零的圆,即是位于和的一个点。当x0时,圆的半径和圆的中心沿着垂直于实数轴()的线(虚线)的位移趋于无
13、限大。从图3可以看出,代表电感性阻抗的正值位于平面的上半部分,代表电容性阻抗的负值位于平面的下半部分。2.2.3 Smith圆图(阻抗圆图)将等电阻圆和等电抗圆组合在一起,在的圆内可得到如图2.4所示的Smith圆图。在Smith圆图中,上半部分x为正数,表示阻抗具有电感性,下半部分为x为负数,表示阻抗具有电容性。水平轴表示的是纯电阻。圆图上的任何一点描述的是电阻和电抗的串联,即z=r+jx形式。图2. 4 smith圆图2.3 电压驻波比两频率相同、振幅相近的电磁波能量流面对面地相撞在一起,会产生驻波,这种电磁波的能量粒子在空间中是处于静止状态的,此暂停运动的时间长度比两电磁波能量流动的时间
14、要长。因为驻波的能量粒子是静止不动的,所以,没有能量流进驻波或从驻波流出来。上述叙述较抽象,但是这里举个类似的例子,就可说明什么是驻波:做个物理实验,将两个口径、流速都相同的水管,面对面相喷,在两水管之间将会激起一个上下飞奔的水柱,这个水柱就是驻波。如果是在无地心引力的空间中,这个水柱将静止在那里不会坠地。 电磁波在传输线流动,入射波和反射波相遇时就会产生驻波。在阻抗不匹配的情况下, 馈线上同时存在入射波和反射波。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅max ,形成波腹;而在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅min ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。 反射波电压和入射波电压幅度之比叫作反射系数,记为,即 反射波幅度 (L0) 入射波幅度 (L0)波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为 VSWR 波腹电压幅度 max (1 + ) VSWR